Project description:Mutations in polycystin1 (PKD1) account for the majority of autosomal dominant polycystic kidney disease (ADPKD). PKD1 mutations are also associated with vascular aneurysm and abdominal wall hernia, suggesting a role for polycystin1 in extracellular matrix (ECM) integrity. In zebrafish, combined knockdown of the PKD1 paralogs pkd1a and pkd1b resulted in dorsal axis curvature, hydrocephalus, cartilage and craniofacial defects, and pronephric cyst formation at low frequency (10-15%). Dorsal axis curvature was identical to the axis defects observed in pkd2 knockdown embryos. Combined pkd1a/b, pkd2 knockdown demonstrated that these genes interact in axial morphogenesis. Dorsal axis curvature was linked to notochord collagen overexpression and could be reversed by knockdown of col2a1 mRNA or chemical inhibition of collagen crosslinking. pkd1a/b- and pkd2-deficient embryos exhibited ectopic, persistent expression of multiple collagen mRNAs, suggesting a loss of negative feedback signaling that normally limits collagen gene expression. Knockdown of pkd1a/b also dramatically sensitized embryos to low doses of collagen-crosslinking inhibitors, implicating polycystins directly in the modulation of collagen expression or assembly. Embryos treated with wortmannin or LY-29400 also exhibited dysregulation of col2a1 expression, implicating phosphoinositide 3-kinase (PI3K) in the negative feedback signaling pathway controlling matrix gene expression. Our results suggest that pkd1a/b and pkd2 interact to regulate ECM secretion or assembly, and that altered matrix integrity may be a primary defect underlying ADPKD tissue pathologies.
Project description:Biofilms are multicellular aggregates stabilized by an extracellular matrix. In Bacillus subtilis, the biofilm matrix is composed of an extracellular polysaccharide and the secreted protein TasA. Expression of both of the matrix components is repressed by the DNA-binding master regulator, SinR. Here we identify two small protein regulators of the extracellular matrix: RemA (formerly YlzA) and RemB (formerly YaaB). Mutation of RemA or RemB impairs pellicle formation, complex colony architecture, and motility inhibition in a sinR mutant background. Both proteins are required for the activation of the matrix biosynthesis operons and appear to act in parallel to SinR and two other known biofilm regulators, AbrB and DegU.
Project description:Secretoglobin family 1A member 1 (SCGB 1A1) is a small protein mainly secreted by mucosal epithelial cells of the lungs and uterus. SCGB 1A1, also known as club (Clara) cell secretory protein, represents a major constituent of airway surface fluid. The protein has anti-inflammatory properties, and its concentration is reduced in equine recurrent airway obstruction (RAO) and human asthma. RAO is characterized by reversible airway obstruction, bronchoconstriction and neutrophilic inflammation. Direct effects of SCGB 1A1 on neutrophil functions are unknown. We have recently identified that the SCGB1A1 gene is triplicated in equids and gives rise to two distinct proteins. In this study we produced the endogenously expressed forms of SCGBs (SCGB 1A1 and 1A1A) as recombinant proteins, and analyzed their effects on reactive oxygen species production, phagocytosis, chemotaxis and neutrophil extracellular trap (NET) formation ex vivo. We further evaluated whether NETs are present in vivo in control and inflamed lungs. Our data show that SCGB 1A1A but not SCGB 1A1 increase neutrophil oxidative burst and phagocytosis; and that both proteins markedly reduce neutrophil chemotaxis. SCGB 1A1A reduced chemotaxis significantly more than SCGB 1A1. NET formation was significantly reduced in a time- and concentration-dependent manner by SCGB 1A1 and 1A1A. SCGB mRNA in bronchial biopsies, and protein concentration in bronchoalveolar lavage fluid, was lower in horses with RAO. NETs were present in bronchoalveolar lavage fluid from horses with exacerbated RAO, but not in fluid from horses with RAO in remission or in challenged healthy horses. These findings indicate that SCGB 1A1 and 1A1A have overlapping and diverging functions. Considering disparities in the relative abundance of SCGB 1A1 and 1A1A in airway secretions of animals with RAO suggests that these functional differences may contribute to the pathogenesis of RAO and other neutrophilic inflammatory lung diseases.
Project description:Cancer cell-derived extracellular vesicles (EVs) are increasingly being recognized as genuine invasive structures as they contribute to many aspects of invasion and metastasis. Unfortunately, the mechanisms underlying EV biogenesis or release are still poorly understood. Recent reports however indicate a role of the actin cytoskeleton in this process. In this study, we have exploited thoroughly characterized camelid nanobodies against actin binding proteins cortactin and fascin-1, a branched actin regulator and actin bundler, respectively, in order to assess their roles in EV biogenesis or release. Using this strategy, we demonstrate a role of the cortactin NTA and SH3 domains in EV release. Fascin-1 also regulates EV release, independently of its actin-bundling activity. We show a contribution of these protein domains in endosomal trafficking, a crucial step in EV biogenesis, and we confirm that EVs are preferentially released at invadopodia, the latter being actin-rich invasive cell protrusions in which cortactin and fascin-1 perform essential roles. Accordingly, EVs are enriched with invadopodial proteins such as the matrix metalloproteinase MT1-MMP and exert gelatinolytic activity. Based on our findings, we report that both cortactin and fascin-1 play key roles in EV release by regulating endosomal trafficking or invadopodia formation and function.
Project description:MnPO neurons play a critical role in hydromineral homeostasis regulation by acting as sensors of extracellular sodium concentration ([Na(+)]out). The mechanism underlying Na(+)-sensing involves Na(+)-flow through the NaX channel, directly regulated by the Na(+)/K(+)-ATPase α1-isoform which controls Na(+)-influx by modulating channel permeability. Together, these two partners form a complex involved in the regulation of intracellular sodium ([Na(+)]in). Here we aim to determine whether environmental changes in Na(+) could actively modulate the NaX/Na(+)/K(+)-ATPase complex activity. We investigated the complex activity using patch-clamp recordings from rat MnPO neurons and Neuro2a cells. When the rats were fed with a high-salt-diet, or the [Na(+)] in the culture medium was increased, the activity of the complex was up-regulated. In contrast, drop in environmental [Na(+)] decreased the activity of the complex. Interestingly under hypernatremic condition, the colocalization rate and protein level of both partners were up-regulated. Under hyponatremic condition, only NaX protein expression was increased and the level of NaX/Na(+)/K(+)-ATPase remained unaltered. This unbalance between NaX and Na(+)/K(+)-ATPase pump proportion would induce a bigger portion of Na(+)/K(+)-ATPase-control-free NaX channel. Thus, we suggest that hypernatremic environment increases NaX/Na(+)/K(+)-ATPase α1-isoform activity by increasing the number of both partners and their colocalization rate, whereas hyponatremic environment down-regulates complex activity via a decrease in the relative number of NaX channels controlled by the pump.
Project description:Most epithelial cells contain apical membrane structures associated to bundles of actin filaments, which constitute the brush border. Whereas microtubule participation in the maintenance of the brush border identity has been characterized, their contribution to de novo microvilli organization remained elusive. Hereby, using a cell model of individual enterocyte polarization, we found that nocodazole induced microtubule depolymerization prevented the de novo brush border formation. Microtubule participation in brush border actin organization was confirmed in polarized kidney tubule MDCK cells. We also found that centrosome, but not Golgi derived microtubules, were essential for the initial stages of brush border development. During this process, microtubule plus ends acquired an early asymmetric orientation toward the apical membrane, which clearly differs from their predominant basal orientation in mature epithelia. In addition, overexpression of the microtubule plus ends associated protein CLIP170, which regulate actin nucleation in different cell contexts, facilitated brush border formation. In combination, the present results support the participation of centrosomal microtubule plus ends in the activation of the polarized actin organization associated to brush border formation, unveiling a novel mechanism of microtubule regulation of epithelial polarity.
Project description:The extracellular matrix (ECM) plays an increasingly recognised role in the development and progression of cancer. Whilst significant progress has been made in targeting aspects of the tumour microenvironment such as tumour immunity and angiogenesis, there are no therapies that address the cancer ECM. Importantly, immune function relies heavily on the structure, physics and composition of the ECM, indicating that cancer ECM and immunity are mechanistically inseparable. In this review we highlight mechanisms by which the ECM shapes tumour immunity, identifying potential therapeutic targets within the ECM. These data indicate that to fully realise the potential of cancer immunotherapy, the cancer ECM requires simultaneous consideration.
Project description:Neuronal connectivity in the cortex is determined by the laminar positioning of neurons. An important determinant of laminar positioning is likely to be the control of leading process behavior during migration, maintaining their tips directed toward the pia. In this study, we provide evidence that pial bone morphogenetic protein (Bmp) signaling regulates cortical neuronal migration during cortical layer formation. Specific disruption of pial Bmp ligands impaired the positioning of early-born neurons in the deep layer; further, cell-autonomous inhibition of Smad4, a core nuclear factor mediating Bmp signaling, in the cortical radial glial cells or postmitotic cortical neurons also produced neuronal migration defects that blurred the cortical layers. We found that leading processes were abnormal and that this was accompanied by excess dephosphorylated cofilin-1, an actin-severing protein, in Smad4 mutant neurons. This suggested that regulation of cofilin-1 might transduce Bmp signaling in the migrating neurons. Ectopic expression of a phosphorylation-defective form of cofilin-1 in the late-born wild-type neurons led them to stall in the deep layer, similar to the Smad4 mutant neurons. Expression of a phosphomimetic variant of cofilin-1 in the Smad4 mutant neurons rescued the migration defects. This suggests that cofilin-1 activity underlies Bmp-mediated cortical neuronal migration. This study shows that cofilin-1 mediates pial Bmp signaling during the positioning of cortical neurons and the formation of cortical layers.
Project description:Protein phosphorylation is a fundamental mechanism regulating nearly every aspect of cellular life. Several secreted proteins are phosphorylated, but the kinases responsible are unknown. We identified a family of atypical protein kinases that localize within the Golgi apparatus and are secreted. Fam20C appears to be the Golgi casein kinase that phosphorylates secretory pathway proteins within S-x-E motifs. Fam20C phosphorylates the caseins and several secreted proteins implicated in biomineralization, including the small integrin-binding ligand, N-linked glycoproteins (SIBLINGs). Consequently, mutations in Fam20C cause an osteosclerotic bone dysplasia in humans known as Raine syndrome. Fam20C is thus a protein kinase dedicated to the phosphorylation of extracellular proteins.
Project description:Ischemic stroke prompts a strong inflammatory response, which is associated with exacerbated outcomes. In this study, we investigated mechanistic regulators of neutrophil extracellular trap (NET) formation in stroke and whether they contribute to stroke outcomes. NET-forming neutrophils were found throughout brain tissue of ischemic stroke patients, and elevated plasma NET biomarkers correlated with worse stroke outcomes. Additionally, we observed increased plasma and platelet surface-expressed high-mobility group box 1 (HMGB1) in stroke patients. Mechanistically, platelets were identified as the critical source of HMGB1 that caused NETs in the acute phase of stroke. Depletion of platelets or platelet-specific knockout of HMGB1 significantly reduced plasma HMGB1 and NET levels after stroke, and greatly improved stroke outcomes. We subsequently investigated the therapeutic potential of neonatal NET-inhibitory factor (nNIF) in stroke. Mice treated with nNIF had smaller brain infarcts, improved long-term neurological and motor function, and enhanced survival after stroke. nNIF specifically blocked NET formation without affecting neutrophil recruitment after stroke. Importantly, nNIF also improved stroke outcomes in diabetic and aged mice and was still effective when given 1 hour after stroke onset. These results support a pathological role for NETs in ischemic stroke and warrant further investigation of nNIF for stroke therapy.