Project description:At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in "ventral F-actin waves" that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These "adhesive F-actin waves" require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization.
Project description:Focal adhesions (FAs) are integrin-based transmembrane assemblies that connect a cell to its extracellular matrix (ECM). They are mechanosensors through which cells exert actin cytoskeleton-mediated traction forces to sense the ECM stiffness. Interestingly, FAs themselves are dynamic structures that adapt their growth in response to mechanical force. It is unclear how the cell manages the plasticity of the FA structure and the associated traction force to accurately sense ECM stiffness. Strikingly, FA traction forces oscillate in time and space, and govern the cell mechanosensing of ECM stiffness. However, precisely how and why the FA traction oscillates is unknown. We developed a model of FA growth that integrates the contributions of the branched actin network and stress fibers (SFs). Using the model in combination with experimental tests, we show that the retrograde flux of the branched actin network promotes the proximal growth of the FA and contributes to a traction peak near the FA's distal tip. The resulting traction gradient within the growing FA favors SF formation near the FA's proximal end. The SF-mediated actomyosin contractility further stabilizes the FA and generates a second traction peak near the center of the FA. Formin-mediated SF elongation negatively feeds back with actomyosin contractility, resulting in central traction peak oscillation. This underpins the observed FA traction oscillation and, importantly, broadens the ECM stiffness range over which FAs can accurately adapt to traction force generation. Actin cytoskeleton-mediated FA growth and maturation thus culminate with FA traction oscillation to drive efficient FA mechanosensing.
Project description:Dendritic cell (DC) expression of CD103, the α subunit of αEβ7 integrin, is thought to enable DC interactions with E-cadherin-expressing gastrointestinal epithelia for improved mucosal immunosurveillance. In the stomach, efficient DC surveillance of the epithelial barrier is crucial for the induction of immune responses to H. pylori, the causative agent of peptic ulcers and gastric cancer. However, gastric DCs express only low levels of surface CD103, as we previously showed. We here tested the hypothesis that intracellular pools of CD103 in human gastric DCs can be redistributed to the cell surface for engagement of epithelial cell-expressed E-cadherin to promote DC-epithelial cell adhesion. In support of our hypothesis, immunofluorescence analysis of tissue sections showed that CD103+ gastric DCs were preferentially localized within the gastric epithelial layer. Flow cytometry and imaging cytometry revealed that human gastric DCs expressed intracellular CD103, corroborating our previous findings in monocyte-derived DCs (MoDCs). Using confocal microscopy, we show that CD103 was present in endosomal compartments, where CD103 partially co-localized with clathrin, early endosome antigen-1 and Rab11, suggesting that CD103 undergoes endosomal trafficking similar to β1 integrins. Dynamic expression of CD103 on human MoDCs was confirmed by internalization assay. To analyze whether DC-expressed CD103 promotes adhesion to E-cadherin, we performed adhesion and spreading assays on E-cadherin-coated glass slides. In MoDCs generated in the presence of retinoic acid, which express increased CD103, intracellular CD103 significantly redistributed toward the E-cadherin-coated glass surface. However, DCs spreading and adhesion did not differ between E-cadherin-coated slides and slides coated with serum alone. In adhesion assays using E-cadherin-positive HT-29 cells, DC binding was significantly improved by addition of Mn2+ and decreased in the presence of EGTA, consistent with the dependence of integrin-based interactions on divalent cations. However, retinoic acid failed to increase DC adhesion, and a CD103 neutralizing antibody was unable to inhibit DC binding to the E-cadherin positive cells. In contrast, a blocking antibody to DC-expressed E-cadherin significantly reduced DC binding to the epithelium. Overall, these data indicate that CD103 engages in DC-epithelial cell interactions upon contact with epithelial E-cadherin, but is not a major driver of DC adhesion to gastrointestinal epithelia.
Project description:Dynamically evolving adhesions between cells and extracellular matrix (ECM) transmit time-varying signals that control cytoskeletal dynamics and cell fate. Dynamic cell adhesion and ECM stiffness regulate cellular mechanosensing cooperatively, but it has not previously been possible to characterize their individual effects because of challenges with controlling these factors independently. Therefore, a DNA-driven molecular system is developed wherein the integrin-binding ligand RGD can be reversibly presented and removed to achieve cyclic cell attachment/detachment on substrates of defined stiffness. Using this culture system, it is discovered that cyclic adhesion accelerates F-actin kinetics and nuclear mechanosensing in human mesenchymal stem cells (hMSCs), with the result that hysteresis can completely change how hMSCs transduce ECM stiffness. Results are dramatically different from well-known results for mechanotransduction on static substrates, but are consistent with a mathematical model of F-actin fragments retaining structure following loss of integrin ligation and participating in subsequent repolymerization. These findings suggest that cyclic integrin-mediated adhesion alters the mechanosensing of ECM stiffness by hMSCs through transient, hysteretic memory that is stored in F-actin.
Project description:T cell entry into inflamed tissue involves firm adhesion, spreading, and migration of the T cells across endothelial barriers. These events depend on "outside-in" signals through which engaged integrins direct cytoskeletal reorganization. We investigated the molecular events that mediate this process and found that T cells from mice lacking expression of the adaptor protein Crk exhibited defects in phenotypes induced by the integrin lymphocyte function-associated antigen 1 (LFA-1), namely, actin polymerization, leading edge formation, and two-dimensional cell migration. Crk protein was an essential mediator of LFA-1 signaling-induced phosphorylation of the E3 ubiquitin ligase c-Cbl and its subsequent interaction with the phosphatidylinositol 3-kinase (PI3K) subunit p85, thus promoting PI3K activity and cytoskeletal remodeling. In addition, we found that Crk proteins were required for T cells to respond to changes in substrate stiffness, as measured by alterations in cell spreading and differential phosphorylation of the force-sensitive protein CasL. These findings identify Crk proteins as key intermediates coupling LFA-1 signals to actin remodeling and provide mechanistic insights into how T cells sense and respond to substrate stiffness.
Project description:BACKGROUND & AIMS:Hepatic recruitment of monocyte-derived macrophages (MoMFs) contributes to the inflammatory response in non-alcoholic steatohepatitis (NASH). However, how hepatocyte lipotoxicity promotes MoMF inflammation is unclear. Here we demonstrate that lipotoxic hepatocyte-derived extracellular vesicles (LPC-EVs) are enriched with active integrin ?1 (ITG?1), which promotes monocyte adhesion and liver inflammation in murine NASH. METHODS:Hepatocytes were treated with either vehicle or the toxic lipid mediator lysophosphatidylcholine (LPC); EVs were isolated from the conditioned media and subjected to proteomic analysis. C57BL/6J mice were fed a diet rich in fat, fructose, and cholesterol (FFC) to induce NASH. Mice were treated with anti-ITG?1 neutralizing antibody (ITG?1Ab) or control IgG isotype. RESULTS:Ingenuity® Pathway Analysis of the LPC-EV proteome indicated that ITG signaling is an overrepresented canonical pathway. Immunogold electron microscopy and nanoscale flow cytometry confirmed that LPC-EVs were enriched with activated ITG?1. Furthermore, we showed that LPC treatment in hepatocytes activates ITG?1 and mediates its endocytic trafficking and sorting into EVs. LPC-EVs enhanced monocyte adhesion to liver sinusoidal cells, as observed by shear stress adhesion assay. This adhesion was attenuated in the presence of ITG?1Ab. FFC-fed, ITG?1Ab-treated mice displayed reduced inflammation, defined by decreased hepatic infiltration and activation of proinflammatory MoMFs, as assessed by immunohistochemistry, mRNA expression, and flow cytometry. Likewise, mass cytometry by time-of-flight on intrahepatic leukocytes showed that ITG?1Ab reduced levels of infiltrating proinflammatory monocytes. Furthermore, ITG?1Ab treatment significantly ameliorated liver injury and fibrosis. CONCLUSIONS:Lipotoxic EVs mediate monocyte adhesion to LSECs mainly through an ITG?1-dependent mechanism. ITG?1Ab ameliorates diet-induced NASH in mice by reducing MoMF-driven inflammation, suggesting that blocking ITG?1 is a potential anti-inflammatory therapeutic strategy in human NASH. LAY SUMMARY:Herein, we report that a cell adhesion molecule termed integrin ?1 (ITG?1) plays a key role in the progression of non-alcoholic steatohepatitis (NASH). ITG?1 is released from hepatocytes under lipotoxic stress as a cargo of extracellular vesicles, and mediates monocyte adhesion to liver sinusoidal endothelial cells, which is an essential step in hepatic inflammation. In a mouse model of NASH, blocking ITG?1 reduces liver inflammation, injury and fibrosis. Hence, ITG?1 inhibition may serve as a new therapeutic strategy for NASH.
Project description:Rapid cell migration requires efficient rear de-adhesion. It remains undetermined whether cells mechanically detach or biochemically disassemble integrin-mediated rear adhesion sites in highly motile cells such as keratocytes. Using molecular tension sensor, we calibrated and mapped integrin tension in migrating keratocytes. Our experiments revealed that high-level integrin tension abbreviated as HIT, in the range of 50-100 pN (piconewton) and capable of rupturing integrin-ligand bonds, is exclusively and narrowly generated at cell rear margin during cell migration. Co-imaging of HIT and focal adhesions (FAs) shows that HIT is produced to mechanically peel off FAs that lag behind, and HIT intensity is correlated with the local cell retraction rate. High-level molecular tension was also consistently generated at the cell margin during artificially induced cell front retraction and during keratocyte migration mediated by biotin-streptavidin bonds. Collectively, these experiments provide direct evidence showing that migrating keratocytes concentrate force at the cell rear margin to mediate rear de-adhesion.
Project description:Junctional adhesion molecule-A (JAM-A) is a member of the immunoglobulin family with diverse functions in epithelial cells, including cell migration, cell contact maturation, and tight junction formation. In endothelial cells, JAM-A has been implicated in basic fibroblast growth factor (bFGF)-regulated angiogenesis through incompletely understood mechanisms. In this paper, we identify tetraspanin CD9 as novel binding partner for JAM-A in endothelial cells. CD9 acts as scaffold and assembles a ternary JAM-A-CD9-?v?3 integrin complex from which JAM-A is released upon bFGF stimulation. CD9 interacts predominantly with monomeric JAM-A, which suggests that bFGF induces signaling by triggering JAM-A dimerization. Among the two vitronectin receptors, ?v?3 and ?v?5 integrin, which have been shown to cooperate during angiogenic signaling with bFGF and vascular endothelial growth factor (VEGF), respectively, CD9 links JAM-A specifically to ?v?3 integrin. In line with this, knockdown of CD9 blocks bFGF- but not VEGF-induced ERK1/2 activation. JAM-A or CD9 knockdown impairs endothelial cell migration and tube formation. Our findings indicate that CD9 incorporates monomeric JAM-A into a complex with ?v?3 integrin, which responds to bFGF stimulation by JAM-A release to regulate mitogen-activated protein kinase (MAPK) activation, endothelial cell migration, and angiogenesis. The data also provide new mechanistic insights into the cooperativity between bFGF and ?v?3 integrin during angiogenic signaling.
Project description:Focal adhesion kinase (FAK) is an essential nonreceptor tyrosine kinase regulating cell migration, adhesive signaling, and mechanosensing. Using FAK-null cells expressing FAK under an inducible promoter, we demonstrate that FAK regulates the time-dependent generation of adhesive forces. During the early stages of adhesion, FAK expression in FAK-null cells enhances integrin activation to promote integrin binding and, hence, the adhesion strengthening rate. Importantly, FAK expression regulated integrin activation, and talin was required for the FAK-dependent effects. A role for FAK in integrin activation was confirmed in human fibroblasts with knocked-down FAK expression. The FAK autophosphorylation Y397 site was required for the enhancements in adhesion strengthening and integrin-binding responses. This work demonstrates a novel role for FAK in integrin activation and the time-dependent generation of cell-ECM forces.
Project description:The properties of cholesterol-dependent domains (lipid rafts) in cell membranes have been controversial. Because integrin-mediated cell adhesion and caveolin both regulate trafficking of raft components, we investigated the effects of adhesion and caveolin on membrane order. The fluorescent probe Laurdan and two-photon microscopy revealed that focal adhesions are highly ordered; in fact, they are more ordered than caveolae or domains that stain with cholera toxin subunit B (CtxB). Membrane order at focal adhesion depends partly on phosphorylation of caveolin1 at Tyr14, which localizes to focal adhesions. Detachment of cells from the substratum triggers a rapid, caveolin-independent decrease in membrane order, followed by a slower, caveolin-dependent decrease that correlates with internalization of CtxB-stained domains. Endocytosed CtxB domains also become more fluid. Thus, membrane order is highly dependent on caveolae and focal adhesions. These results show that lipid raft properties are conferred by assembly of specific protein complexes. The ordered state within focal adhesions may have important consequences for signaling at these sites.