Project description:During vegetative growth, Saccharomyces cerevisiae cells divide asymmetrically: the mother cell buds to produce a smaller daughter cell. This daughter asymmetrically inherits the transcription factor Ace2, which activates daughter-specific transcriptional programs. In this paper, we investigate when and how this asymmetry is established and maintained. We show that Ace2 asymmetry is initiated in the elongated, but undivided, anaphase nucleus. At this stage, the nucleoplasm was highly compartmentalized; little exchange was observed for nucleoplasmic proteins between mother and bud. Using photobleaching and in silico modeling, we show that diffusion barriers compartmentalize the nuclear membranes. In contrast, the behavior of proteins in the nucleoplasm is well explained by the dumbbell shape of the anaphase nucleus. This compartmentalization of the nucleoplasm promoted Ace2 asymmetry in anaphase nuclei. Thus, our data indicate that yeast cells use the process of closed mitosis and the morphological constraints associated with it to asymmetrically segregate nucleoplasmic components.
Project description:As a dividing cell exits mitosis and daughter cells enter interphase, many proteins must be dephosphorylated. The protein phosphatase 2A (PP2A) with its B55 regulatory subunit plays a crucial role in this transition, but the identity of its substrates and how their dephosphorylation promotes mitotic exit are largely unknown. We conducted a maternal-effect screen in Drosophila melanogaster to identify genes that function with PP2A-B55/Tws in the cell cycle. We found that eggs that receive reduced levels of Tws and of components of the nuclear envelope (NE) often fail development, concomitant with NE defects following meiosis and in syncytial mitoses. Our mechanistic studies using Drosophila cells indicate that PP2A-Tws promotes nuclear envelope reformation (NER) during mitotic exit by dephosphorylating BAF and suggests that PP2A-Tws targets additional NE components, including Lamin and Nup107. This work establishes Drosophila as a powerful model to further dissect the molecular mechanisms of NER and suggests additional roles of PP2A-Tws in the completion of meiosis and mitosis.
Project description:Precise double-strand break (DSB) repair is a paramount for genome stability. Homologous recombination (HR) repairs DSBs when cyclin-dependent kinase (CDK) activity is high, which correlates with the availability of the sister chromatid as a template. However, anaphase and telophase are paradoxical scenarios since high CDK favors HR despite sister chromatids being no longer aligned. To identify factors specifically involved in DSB repair in late mitosis, we have undertaken comparative proteomics in Saccharomyces cerevisiae and found that meiotic sister chromatid 1 (Msc1), a poorly characterized nuclear envelope protein, is significantly enriched upon both random and guided DSBs. We further show that Δmsc1 is more sensitive to DSBs in late mitosis, and has a delayed repair of DBSs, as indicated by increased Rad53 hyperphosphorylation, a higher presence of RPA foci, fewer Rad52 repair factories, and slower HR completion. We propose that Msc1 favors the later stages of HR and the timely completion of DSB repair before cytokinesis.
Project description:At the end of mitosis, eukaryotic cells must segregate the two copies of their replicated genome into two new nuclear compartments1. They do this either by first dismantling and later reassembling the nuclear envelope in an 'open mitosis' or by reshaping an intact nucleus and then dividing it into two in a 'closed mitosis'2,3. Mitosis has been studied in a wide variety of eukaryotes for more than a century4, but how the double membrane of the nuclear envelope is split into two at the end of a closed mitosis without compromising the impermeability of the nuclear compartment remains unknown5. Here, using the fission yeast Schizosaccharomyces pombe (a classical model for closed mitosis5), genetics, live-cell imaging and electron tomography, we show that nuclear fission is achieved via local disassembly of nuclear pores within the narrow bridge that links segregating daughter nuclei. In doing so, we identify the protein Les1, which is localized to the inner nuclear envelope and restricts the process of local nuclear envelope breakdown to the bridge midzone to prevent the leakage of material from daughter nuclei. The mechanism of local nuclear envelope breakdown in a closed mitosis therefore closely mirrors nuclear envelope breakdown in open mitosis3, revealing an unexpectedly high conservation of nuclear remodelling mechanisms across diverse eukaryotes.
Project description:The nuclear envelope (NE) in lower eukaryotes such as Schizosaccharomyces pombe undergoes large morphology changes during closed mitosis. However, which physical parameters are important in governing the shape evolution of the NE, and how defects in the dividing chromosomes/microtubules are reflected in those parameters, are fundamental questions that remain unresolved. In this study, we show that improper separation of chromosomes in genetically deficient cells leads to membrane tethering or asymmetric division in contrast to the formation of two equal-sized daughter nuclei in wild-type cells. We hypothesize that the poleward force is transmitted to the nuclear membrane through its physical contact with the separated sister chromatids at the two spindle poles. A theoretical model is developed to predict the morphology evolution of the NE where key factors such as the work done by the poleward force and bending and surface energies stored in the membrane have been taken into account. Interestingly, the predicted phase diagram, summarizing the dependence of nuclear shape on the size of the load transmission regions, and the pole-to-pole distance versus surface area relationship all quantitatively agree well with our experimental observations, suggesting that this model captures the essential physics involved in closed mitosis.
Project description:As eukaryotic cells progress through cell division, the nuclear envelope (NE) membrane must expand to accommodate the formation of progeny nuclei. In Saccharomyces cerevisiae, closed mitosis allows visualization of NE biogenesis during mitosis. During this period, the SUMO E3 ligase Siz2 binds the inner nuclear membrane (INM) and initiates a wave of INM protein SUMOylation. Here, we show these events increase INM levels of phosphatidic acid (PA), an intermediate of phospholipid biogenesis, and are necessary for normal mitotic NE membrane expansion. The increase in INM PA is driven by the Siz2-mediated inhibition of the PA phosphatase Pah1. During mitosis, this results from the binding of Siz2 to the INM and dissociation of Spo7 and Nem1, a complex required for the activation of Pah1. As cells enter interphase, the process is then reversed by the deSUMOylase Ulp1. This work further establishes a central role for temporally controlled INM SUMOylation in coordinating processes, including membrane expansion, that regulate NE biogenesis during mitosis.
Project description:Emerin, MAN1, and LAP2 are integral membrane proteins of the vertebrate nuclear envelope. They share a 43-residue N-terminal motif termed the LEM domain. We found three putative LEM domain genes in Caenorhabditis elegans, designated emr-1, lem-2, and lem-3. We analyzed emr-l, which encodes Ce-emerin, and lem-2, which encodes Ce-MAN1. Ce-emerin and Ce-MAN1 migrate on SDS-PAGE as 17- and 52-kDa proteins, respectively. Based on their biochemical extraction properties and immunolocalization, both Ce-emerin and Ce-MAN1 are integral membrane proteins localized at the nuclear envelope. We used antibodies against Ce-MAN1, Ce-emerin, nucleoporins, and Ce-lamin to determine the timing of nuclear envelope breakdown during mitosis in C. elegans. The C. elegans nuclear envelope disassembles very late compared with vertebrates and Drosophila. The nuclear membranes remained intact everywhere except near spindle poles during metaphase and early anaphase, fully disassembling only during mid-late anaphase. Disassembly of pore complexes, and to a lesser extent the lamina, depended on embryo age: pore complexes were absent during metaphase in >30-cell embryos but existed until anaphase in 2- to 24-cell embryos. Intranuclear mRNA splicing factors disassembled after prophase. The timing of nuclear disassembly in C. elegans is novel and may reflect its evolutionary position between unicellular and more complex eukaryotes.
Project description:Disassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes. Nuclear envelope disintegration was shown upon infection, microinjection but also upon their application to permeabilized cells. The latter technique also showed that nuclear envelope disintegration was independent upon soluble cytoplasmic factors. Using time-lapse microscopy, we observed that nuclear disassembly exhibited mitosis-like kinetics and occurred suddenly, implying a catastrophic event irrespective of cell- or type of parvovirus used. Analyzing the order of the processes allowed us to propose a model starting with direct binding of parvoviruses to distinct proteins of the nuclear pore causing structural rearrangement of the parvoviruses. The resulting exposure of domains comprising amphipathic helices was required for nuclear envelope disintegration, which comprised disruption of inner and outer nuclear membrane as shown by electron microscopy. Consistent with Ca⁺⁺ efflux from the lumen between inner and outer nuclear membrane we found that Ca⁺⁺ was essential for nuclear disassembly by activating PKC. PKC activation then triggered activation of cdk-2, which became further activated by caspase-3. Collectively our study shows a unique interaction of a virus with the nuclear envelope, provides evidence that a nuclear pool of executing enzymes is sufficient for nuclear disassembly in quiescent cells, and demonstrates that nuclear disassembly can be uncoupled from initial phases of mitosis.
Project description:During the early phase of replication, HIV reverse transcribes its RNA and crosses the nuclear envelope while escaping host antiviral defenses. The host factor Cyclophilin A (CypA) is essential for these steps and binds the HIV capsid; however, the mechanism underlying this effect remains elusive. Here, we identify related capsid mutants in HIV-1, HIV-2, and SIVmac that are restricted by CypA. This antiviral restriction of mutated viruses is conserved across species and prevents nuclear import of the viral cDNA. Importantly, the inner nuclear envelope protein SUN2 is required for the antiviral activity of CypA. We show that wild-type HIV exploits SUN2 in primary CD4+ T cells as an essential host factor that is required for the positive effects of CypA on reverse transcription and infection. Altogether, these results establish essential CypA-dependent functions of SUN2 in HIV infection at the nuclear envelope.
Project description:The Amoebozoan Dictyostelium discoideum exhibits a semi-closed mitosis in which the nuclear membranes remain intact but become permeabilized to allow tubulin and spindle assembly factors to access the nuclear interior. Previous work indicated that this is accomplished at least by partial disassembly of nuclear pore complexes (NPCs). Further contributions by the insertion process of the duplicating, formerly cytosolic, centrosome into the nuclear envelope and nuclear envelope fenestrations forming around the central spindle during karyokinesis were discussed. We studied the behavior of several Dictyostelium nuclear envelope, centrosomal, and nuclear pore complex (NPC) components tagged with fluorescence markers together with a nuclear permeabilization marker (NLS-TdTomato) by live-cell imaging. We could show that permeabilization of the nuclear envelope during mitosis occurs in synchrony with centrosome insertion into the nuclear envelope and partial disassembly of nuclear pore complexes. Furthermore, centrosome duplication takes place after its insertion into the nuclear envelope and after initiation of permeabilization. Restoration of nuclear envelope integrity usually occurs long after re-assembly of NPCs and cytokinesis has taken place and is accompanied by a concentration of endosomal sorting complex required for transport (ESCRT) components at both sites of nuclear envelope fenestration (centrosome and central spindle).