Project description:Accurate chromosome segregation during mitosis relies on a dynamic kinetochore (KT)-microtubule (MT) interface that switches from a labile to a stable condition in response to correct MT attachments. This transition is essential to satisfy the spindle-assembly checkpoint (SAC) and couple MT-generated force with chromosome movements, but the underlying regulatory mechanism remains unclear. In this study, we show that during mitosis the MT- and KT-associated protein CLASP2 is progressively and distinctively phosphorylated by Cdk1 and Plk1 kinases, concomitant with the establishment of KT-MT attachments. CLASP2 S1234 was phosphorylated by Cdk1, which primed CLASP2 for association with Plk1. Plk1 recruitment to KTs was enhanced by CLASP2 phosphorylation on S1234. This was specifically required to stabilize KT-MT attachments important for chromosome alignment and to coordinate KT and non-KT MT dynamics necessary to maintain spindle bipolarity. CLASP2 C-terminal phosphorylation by Plk1 was also required for chromosome alignment and timely satisfaction of the SAC. We propose that Cdk1 and Plk1 mediate a fine CLASP2 "phospho-switch" that temporally regulates KT-MT attachment stability.
Project description:Dividing cells detect and correct erroneous kinetochore-microtubule attachments during mitosis, thereby avoiding chromosome missegregation. The Aurora B kinase phosphorylates microtubule-binding elements specifically at incorrectly attached kinetochores, promoting their release and providing another chance for proper attachments to form. However, growing evidence suggests that the Mps1 kinase is also required for error correction. Here we directly examine how Mps1 activity affects kinetochore-microtubule attachments using a reconstitution-based approach that allows us to separate its effects from Aurora B activity. When endogenous Mps1 that copurifies with kinetochores is activated in vitro, it weakens their attachments to microtubules via phosphorylation of Ndc80, a major microtubule-binding protein. This phosphorylation contributes to error correction because phospho-deficient Ndc80 mutants exhibit genetic interactions and segregation defects when combined with mutants in other error correction pathways. In addition, Mps1 phosphorylation of Ndc80 is stimulated on kinetochores lacking tension. These data suggest that Mps1 provides an additional mechanism for correcting erroneous kinetochore-microtubule attachments, complementing the well-known activity of Aurora B.
Project description:The existence of structural intermediates in the processes of microtubule assembly and disassembly, and their relationship with the nucleotide state of tubulin, have been the subject of significant study and recent controversy. The first part of this chapter describes experiments and methods designed to characterize, using cryo-electron microscopy (cryo-EM) and image analysis, the structure of stabilized tubulin assemblies that we propose mimic the growth and shortening states at microtubule ends. We further put forward the idea that these intermediates have important biological functions, especially during cellular processes where the dynamic character of microtubules is essential. One such process is the attachment of spindle microtubules to kinetochores in eukaryotic cell division. The second part of this chapter is consequently dedicated to studies of the yeast Dam 1 kinetochore complex and its interaction with microtubules. This complex is essential for accurate chromosome segregation and is an important target of the Aurora B spindle check-point kinase. The Dam 1 complex self-assembles in a microtubule-dependent manner into rings and spirals. The rings are able to track microtubule-depolymerizing ends against a load and in a highly processive manner, an essential property for their function in vivo. We describe the experimental in vitro protocols to produce biologically relevant self-assembled structures of Dam 1 around microtubules and their structural characterization by cryo-EM.
Project description:The persistent malattachment of microtubules to chromosomes at kinetochores is a major mechanism of chromosomal instability (CIN) [1, 2]. In normal diploid cells, malattachments arise spontaneously and are efficiently corrected to preserve genomic stability [3]. However, it is unknown whether cancer cells with CIN possess the ability to efficiently correct attachment errors. Here we show that kinetochore microtubule attachments in cancer cells with CIN are inherently more stable than those in normal diploid RPE-1 cells. The observed differences in attachment stability account for the persistence of malattachments into anaphase, where they cause chromosome missegregation. Furthermore, increasing the stability of kinetochore microtubule attachments in normal diploid RPE-1 cells, either by depleting the tumor suppressor protein APC or the kinesin-13 protein MCAK, is sufficient to promote chromosome segregation defects to levels comparable to those in cancer cells with CIN. Collectively, these data identify that cancer cells have a diminished capacity to correct erroneous kinetochore microtubule attachments and account for the widespread occurrence of CIN in tumors [4].
Project description:Kinetochores are macromolecular machines that couple chromosomes to dynamic microtubule tips during cell division, thereby generating force to segregate the chromosomes. Accurate segregation depends on selective stabilization of correct 'bi-oriented' kinetochore-microtubule attachments, which come under tension as the result of opposing forces exerted by microtubules. Tension is thought to stabilize these bi-oriented attachments indirectly, by suppressing the destabilizing activity of a kinase, Aurora B. However, a complete mechanistic understanding of the role of tension requires reconstitution of kinetochore-microtubule attachments for biochemical and biophysical analyses in vitro. Here we show that native kinetochore particles retaining the majority of kinetochore proteins can be purified from budding yeast and used to reconstitute dynamic microtubule attachments. Individual kinetochore particles maintain load-bearing associations with assembling and disassembling ends of single microtubules for >30?min, providing a close match to the persistent coupling seen in vivo between budding yeast kinetochores and single microtubules. Moreover, tension increases the lifetimes of the reconstituted attachments directly, through a catch bond-like mechanism that does not require Aurora B. On the basis of these findings, we propose that tension selectively stabilizes proper kinetochore-microtubule attachments in vivo through a combination of direct mechanical stabilization and tension-dependent phosphoregulation.
Project description:Chromosome segregation during cell division depends on interactions of kinetochores with dynamic microtubules (MTs). In many eukaryotes, each kinetochore binds multiple MTs, but the collective behavior of these coupled MTs is not well understood. We present a minimal model for collective kinetochore-MT dynamics, based on in vitro measurements of individual MTs and their dependence on force and kinetochore phosphorylation by Aurora B kinase. For a system of multiple MTs connected to the same kinetochore, the force-velocity relation has a bistable regime with two possible steady-state velocities: rapid shortening or slow growth. Bistability, combined with the difference between the growing and shrinking speeds, leads to center-of-mass and breathing oscillations in bioriented sister kinetochore pairs. Kinetochore phosphorylation shifts the bistable region to higher tensions, so that only the rapidly shortening state is stable at low tension. Thus, phosphorylation leads to error correction for kinetochores that are not under tension. We challenged the model with new experiments, using chemically induced dimerization to enhance Aurora B activity at metaphase kinetochores. The model suggests that the experimentally observed disordering of the metaphase plate occurs because phosphorylation increases kinetochore speeds by biasing MTs to shrink. Our minimal model qualitatively captures certain characteristic features of kinetochore dynamics, illustrates how biochemical signals such as phosphorylation may regulate the dynamics, and provides a theoretical framework for understanding other factors that control the dynamics in vivo.
Project description:The attachment of kinetochores to spindle microtubules (MTs) is essential for maintaining constant ploidy in eukaryotic cells. Here, biochemical and imaging data is presented demonstrating that the budding yeast CLIP-170 orthologue Bik1is a component of the kinetochore-MT binding interface. Strikingly, Bik1 is not required for viability in haploid cells, but becomes essential in polyploids. The ploidy-specific requirement for BIK1 enabled us to characterize BIK1 without eliminating nonhomologous genes, providing a new approach to circumventing the overlapping function that is a common feature of the cytoskeleton. In polyploid cells, Bik1 is required before anaphase to maintain kinetochore separation and therefore contributes to the force that opposes the elastic recoil of attached sister chromatids. The role of Bik1 in kinetochore separation appears to be independent of the role of Bik1 in regulating MT dynamics. The finding that a protein involved in kinetochore-MT attachment is required for the viability of polyploids has potential implications for cancer therapeutics.
Project description:Faithful chromosome segregation during mitosis is critical for maintaining genome integrity in cell progeny and relies on accurate and robust kinetochore-microtubule attachments. The NDC80 complex, a tetramer comprising kinetochore protein HEC1 (HEC1), NDC80 kinetochore complex component NUF2 (NUF2), NDC80 kinetochore complex component SPC24 (SPC24), and SPC25, plays a critical role in kinetochore-microtubule attachment. Mounting evidence indicates that phosphorylation of HEC1 is important for regulating the binding of the NDC80 complex to microtubules. However, it remains unclear whether other post-translational modifications, such as acetylation, regulate NDC80-microtubule attachment during mitosis. Here, using pulldown assays with HeLa cell lysates and site-directed mutagenesis, we show that HEC1 is a bona fide substrate of the lysine acetyltransferase Tat-interacting protein, 60 kDa (TIP60) and that TIP60-mediated acetylation of HEC1 is essential for accurate chromosome segregation in mitosis. We demonstrate that TIP60 regulates the dynamic interactions between NDC80 and spindle microtubules during mitosis and observed that TIP60 acetylates HEC1 at two evolutionarily conserved residues, Lys-53 and Lys-59. Importantly, this acetylation weakened the phosphorylation of the N-terminal HEC1(1-80) region at Ser-55 and Ser-62, which is governed by Aurora B and regulates NDC80-microtubule dynamics, indicating functional cross-talk between these two post-translation modifications of HEC1. Moreover, the TIP60-mediated acetylation was specifically reversed by sirtuin 1 (SIRT1). Taken together, our results define a conserved signaling hierarchy, involving HEC1, TIP60, Aurora B, and SIRT1, that integrates dynamic HEC1 acetylation and phosphorylation for accurate kinetochore-microtubule attachment in the maintenance of genomic stability during mitosis.
Project description:The critical step in meiosis is to attach homologous chromosomes to the opposite poles. In mouse oocytes, stable microtubule end-on attachments to kinetochores are not established until hours after spindle assembly, and phosphorylation of kinetochore proteins by Aurora B/C is responsible for the delay. Here we demonstrated that microtubule ends are actively prevented from stable attachment to kinetochores until well after spindle formation in Drosophila melanogaster oocytes. We identified the microtubule catastrophe-promoting complex Sentin-EB1 as a major factor responsible for this delay. Without this activity, microtubule ends precociously form robust attachments to kinetochores in oocytes, leading to a high proportion of homologous kinetochores stably attached to the same pole. Therefore, regulation of microtubule ends provides an alternative novel mechanism to delay stable kinetochore-microtubule attachment in oocytes.
Project description:Kinetochore attachment to spindle microtubule plus-ends is necessary for accurate chromosome segregation during cell division in all eukaryotes. The centromeric DNA of each chromosome is linked to microtubule plus-ends by eight structural-protein complexes. Knowing the copy number of each of these complexes at one kinetochore-microtubule attachment site is necessary to understand the molecular architecture of the complex, and to elucidate the mechanisms underlying kinetochore function. We have counted, with molecular accuracy, the number of structural protein complexes in a single kinetochore-microtubule attachment using quantitative fluorescence microscopy of GFP-tagged kinetochore proteins in the budding yeast Saccharomyces cerevisiae. We find that relative to the two Cse4p molecules in the centromeric histone, the copy number ranges from one or two for inner kinetochore proteins such as Mif2p, to 16 for the DAM-DASH complex at the kinetochore-microtubule interface. These counts allow us to visualize the overall arrangement of a kinetochore-microtubule attachment. As most of the budding yeast kinetochore proteins have homologues in higher eukaryotes, including humans, this molecular arrangement is likely to be replicated in more complex kinetochores that have multiple microtubule attachments.