Project description:Human DNA polymerase ? (Pol ?) is best known for its role in responding to UV irradiation-induced genome damage. We have recently observed that Pol ? is also required for the stability of common fragile sites (CFSs), whose rearrangements are considered a driving force of oncogenesis. Here, we explored the molecular mechanisms underlying this newly identified role. We demonstrated that Pol ? accumulated at CFSs upon partial replication stress and could efficiently replicate non-B DNA sequences within CFSs. Pol ? deficiency led to persistence of checkpoint-blind under-replicated CFS regions in mitosis, detectable as FANCD2-associated chromosomal sites that were transmitted to daughter cells in 53BP1-shielded nuclear bodies. Expression of a catalytically inactive mutant of Pol ? increased replication fork stalling and activated the replication checkpoint. These data are consistent with the requirement of Pol ?-dependent DNA synthesis during S phase at replication forks stalled in CFS regions to suppress CFS instability by preventing checkpoint-blind under-replicated DNA in mitosis.
Project description:The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is known to have a critical role in DNA double-strand break repair. We have previously reported that DNA-PKcs is activated when cells enter mitosis and functions in mitotic spindle assembly and chromosome segregation. Here we report that DNA-PKcs is the upstream regulator of the Chk2-Brca1 pathway, which impacts microtubule dynamics, kinetochore attachment and chromosomal segregation in mitosis. Downstream from Chk2, Brca1 promotes monoubiquitination of γ-tubulin to inhibit microtubule nucleation and growth. We found that DNA-PKcs is essential for mitotic Chk2 phosphorylation at Thr68. As in Chk2- and Brca1-deficient cells, loss of DNA-PKcs resulted in chromosome misalignment and lagging during anaphase owing to elevation in microtubule dynamics. Importantly, these mitotic aberrations in DNA-PKcs-defective cells were alleviated by the overexpression of phosphomimetic Chk2 or Brca1 mutant proteins but not their wild-type counterparts. Taken together, these results demonstrate that DNA-PKcs regulates mitotic spindle organization and chromosomal instability via the Chk2-Brca1 signaling pathway.
Project description:Geminin is an unstable inhibitor of DNA replication that negatively regulates the licensing factor CDT1 and inhibits pre-replicative complex (pre-RC) formation in Xenopus egg extracts. Here we describe a novel function of Geminin. We demonstrate that human Geminin protects CDT1 from proteasome-mediated degradation by inhibiting its ubiquitination. In particular, Geminin ensures basal levels of CDT1 during S phase and its accumulation during mitosis. Consistently, inhibition of Geminin synthesis during M phase leads to impairment of pre-RC formation and DNA replication during the following cell cycle. Moreover, we show that inhibition of CDK1 during mitosis, and not Geminin depletion, is sufficient for premature formation of pre-RCs, indicating that CDK activity is the major mitotic inhibitor of licensing in human cells. Taken together with recent data from our laboratory, our results demonstrate that Geminin is both a negative and positive regulator of pre-RC formation in human cells, playing a positive role in allowing CDT1 accumulation in G2-M, and preventing relicensing of origins in S-G2.
Project description:Malignant melanoma is an aggressive cancer known for its notorious resistance to most current therapies. The basic helix-loop-helix microphthalmia transcription factor (MITF) is the master regulator determining the identity and properties of the melanocyte lineage, and is regarded as a lineage-specific ‘oncogene’ that has a critical role in the pathogenesis of melanoma. MITF promotes melanoma cell proliferation, whereas sustained supression of MITF expression leads to senescence. By combining chromatin immunoprecipitation coupled to high throughput sequencing (ChIP-seq) and RNA sequen- cing analyses, we show that MITF directly regulates a set of genes required for DNA replication, repair and mitosis. Our results reveal how loss of MITF regulates mitotic fidelity, and through defective replication and repair induces DNA damage, ultimately ending in cellular senescence. These findings reveal a lineage-specific control of DNA replication and mitosis by MITF, providing new avenues for therapeutic intervention in melanoma. The identification of MITF-binding sites and gene- regulatory networks establish a framework for under- standing oncogenic basic helix-loop-helix factors such as N-myc or TFE3 in other cancers. 4 samples corresponding to genomic occupancy profiling of MITF (Cl8), PolII (501Mel), H3K4me3 501Mel). Anti-HA ChIP-seq on untagged cell line (501Mel) was used as a control.
Project description:The partially understood phosphoinositide signaling cascade regulates multiple aspects of cellular metabolism. Previous studies revealed that INPP5E, the inositol polyphosphate-5-phosphatase that is mutated in the developmental disorders Joubert and MORM syndromes, is essential for the function of the primary cilium and maintenance of phosphoinositide balance in nondividing cells. Here, we report that INPP5E further contributes to cellular homeostasis by regulating cell division. We found that silencing or genetic knockout of INPP5E in human and murine cells impairs the spindle assembly checkpoint, centrosome and spindle function, and maintenance of chromosomal integrity. Consistent with a cell cycle regulatory role, we found that INPP5E expression is cell cycle dependent, peaking at mitotic entry. INPP5E localizes to centrosomes, chromosomes, and kinetochores in early mitosis and shuttles to the midzone spindle at mitotic exit. Our findings identify the previously unknown, essential role of INPP5E in mitosis and prevention of aneuploidy, providing a new perspective on the function of this phosphoinositide phosphatase in health and development.
Project description:We have shown that Sp1 phosphorylation at Thr739 decreases its DNA-binding activity. In this study, we found that phosphorylation of Sp1 at Thr739 alone is necessary, but not sufficient for the inhibition of its DNA-binding activity during mitosis. We demonstrated that Pin1 could be recruited to the Thr739(p)-Pro motif of Sp1 to modulate the interaction between phospho-Sp1 and CDK1, thereby facilitating CDK1-mediated phosphorylation of Sp1 at Ser720, Thr723 and Thr737 during mitosis. Loss of the C-terminal end of Sp1 (amino acids 741-785) significantly increased Sp1 phosphorylation, implying that the C-terminus inhibits CDK1-mediated Sp1 phosphorylation. Binding analysis of Sp1 peptides to Pin1 by isothermal titration calorimetry indicated that Pin1 interacts with Thr739(p)-Sp1 peptide but not with Thr739-Sp1 peptide. X-ray crystallography data showed that the Thr739(p)-Sp1 peptide occupies the active site of Pin1. Increased Sp1 phosphorylation by CDK1 during mitosis not only stabilized Sp1 levels by decreasing interaction with ubiquitin E3-ligase RNF4 but also caused Sp1 to move out of the chromosomes completely by decreasing its DNA-binding activity, thereby facilitating cell cycle progression. Thus, Pin1-mediated conformational changes in the C-terminal region of Sp1 are critical for increased CDK1-mediated Sp1 phosphorylation to facilitate cell cycle progression during mitosis.
Project description:DNA base lesions, such as incorporation of uracil into DNA or base mismatches, can be mutagenic and toxic to replicating cells. To discover factors in repair of genomic uracil, we performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluoro-uracil into DNA. We identified known factors, such as uracil DNA N-glycosylase (UNG), but also unknown factors, such as the N6-adenosine methyltransferase, METTL3, as required to overcome floxuridine-driven cytotoxicity. Visualized with immunofluorescence, the product of METTL3 activity, N6-methyladenosine, formed nuclear foci in cells treated with floxuridine. The observed N6-methyladenosine was embedded in DNA, called 6mA, which was confirmed using mass spectrometry. METTL3 and 6mA were required for repair of lesions driven by additional base damaging agents, including raltitrexed, gemcitabine, and hydroxyurea. Our results establish a role for METTL3 and 6mA to promote genome stability in mammalian cells, specially in response to base damage.
Project description:Telomeric regions of the genome are inherently difficult-to-replicate due to their propensity to generate DNA secondary structures and form nucleoprotein complexes that can impede DNA replication fork progression. Precisely how cells respond to DNA replication stalling within a telomere remains poorly characterized, largely due to the methodological difficulties in analysing defined stalling events in molecular detail. Here, we utilized a site-specific DNA replication barrier mediated by the 'Tus/Ter' system to define the consequences of DNA replication perturbation within a single telomeric locus. Through molecular genetic analysis of this defined fork-stalling event, coupled with the use of a genome-wide genetic screen, we identified an important role for the SUMO-like domain protein, Esc2, in limiting genome rearrangements at a telomere. Moreover, we showed that these rearrangements are driven by the combined action of the Mph1 helicase and the homologous recombination machinery. Our findings demonstrate that chromosomal context influences cellular responses to a stalled replication fork and reveal protective factors that are required at telomeric loci to limit DNA replication stress-induced chromosomal instability.
Project description:DNA2 is a nuclease/helicase that is involved in Okazaki fragment maturation, replication fork processing, and end resection of DNA double-strand breaks. Similar such helicase activity for resolving secondary structures and structure-specific nuclease activity are needed during DNA replication to process the chromosome-specific higher order repeat units present in the centromeres of human chromosomes. Here, we show that DNA2 binds preferentially to centromeric DNA The nuclease and helicase activities of DNA2 are both essential for resolution of DNA structural obstacles to facilitate DNA replication fork movement. Loss of DNA2-mediated clean-up mechanisms impairs centromeric DNA replication and CENP-A deposition, leading to activation of the ATR DNA damage checkpoints at centromeric DNA regions and late-S/G2 cell cycle arrest. Cells that escape arrest show impaired metaphase plate formation and abnormal chromosomal segregation. Furthermore, the DNA2 inhibitor C5 mimics DNA2 knockout and synergistically kills cancer cells when combined with an ATR inhibitor. These findings provide mechanistic insights into how DNA2 supports replication of centromeric DNA and give further insights into new therapeutic strategies.
Project description:The accurate repair of DNA double-strand breaks (DSBs), highly toxic DNA lesions, is crucial for genome integrity and is tightly regulated during the cell cycle. In mitosis, cells inactivate DSB repair in favor of a tethering mechanism that stabilizes broken chromosomes until they are repaired in the subsequent cell cycle phases. How this is achieved mechanistically is not yet understood, but the adaptor protein TOPBP1 is critically implicated in this process. Here, we identify CIP2A as a TOPBP1-interacting protein that regulates TOPBP1 localization specifically in mitosis. Cells lacking CIP2A display increased radio-sensitivity, micronuclei formation and chromosomal instability. CIP2A is actively exported from the cell nucleus in interphase but, upon nuclear envelope breakdown at the onset of mitosis, gains access to chromatin where it forms a complex with MDC1 and TOPBP1 to promote TOPBP1 recruitment to sites of mitotic DSBs. Collectively, our data uncover CIP2A-TOPBP1 as a mitosis-specific genome maintenance complex.