Project description:BubR1 acetylation is essential in mitosis. Mice heterozygous for the acetylation-deficient BubR1 allele (K243R/+) spontaneously developed tumors with massive chromosome missegregations. K243R/+ mouse embryonic fibroblasts (MEFs) exhibited a weakened spindle assembly checkpoint (SAC) with shortened mitotic timing. The generation of the SAC signal was intact, as Mad2 localization to the unattached kinetochore (KT) was unaltered; however, because of the premature degradation of K243R-BubR1, the mitotic checkpoint complex disassociated prematurely in the nocodazole-treated condition, suggesting that maintenance of the SAC is compromised. BubR1 acetylation was also required to counteract excessive Aurora B activity at the KT for stable chromosome-spindle attachments. The association of acetylation-deficient BubR1 with PP2A-B56α phosphatase was reduced, and the phosphorylated Ndc80 at the KT was elevated in K243R/+ MEFs. In relation, there was a marked increase of micronuclei and p53 mutation was frequently detected in primary tumors of K243R/+ mice. Collectively, the combined effects of failure in chromosome-spindle attachment and weakened SAC cause genetic instability and cancer in K243R/+ mice.
Project description:The spindle assembly checkpoint (SAC) prevents premature sister chromatid separation during mitosis. Phosphorylation of unattached kinetochores by the Mps1 kinase promotes recruitment of SAC machinery that catalyzes assembly of the SAC effector mitotic checkpoint complex (MCC). The SAC protein Bub3 is a phospho-amino acid adaptor that forms structurally related stable complexes with functionally distinct paralogs named Bub1 and BubR1. A short motif ("loop") of Bub1, but not the equivalent loop of BubR1, enhances binding of Bub3 to kinetochore phospho-targets. Here, we asked whether the BubR1 loop directs Bub3 to different phospho-targets. The BubR1 loop is essential for SAC function and cannot be removed or replaced with the Bub1 loop. BubR1 loop mutants bind Bub3 and are normally incorporated in MCC in vitro but have reduced ability to inhibit the MCC target anaphase-promoting complex (APC/C), suggesting that BubR1:Bub3 recognition and inhibition of APC/C requires phosphorylation. Thus, small sequence differences in Bub1 and BubR1 direct Bub3 to different phosphorylated targets in the SAC signaling cascade.
Project description:Interference with microtubule dynamics in mitosis activates the spindle assembly checkpoint (SAC) to prevent chromosome segregation errors. The SAC induces mitotic arrest by inhibiting the anaphase-promoting complex (APC) via the mitotic checkpoint complex (MCC). The MCC component MAD2 neutralises the critical APC cofactor, CDC20, preventing exit from mitosis. Extended mitotic arrest can promote mitochondrial apoptosis and caspase activation. However, the impact of mitotic cell death on tissue homoestasis in vivo is ill-defined. By conditional MAD2 overexpression, we observe that chronic SAC activation triggers bone marrow aplasia and intestinal atrophy in mice. While myelosuppression can be compensated for, gastrointestinal atrophy is detrimental. Remarkably, deletion of pro-apoptotic Bim/Bcl2l11 prevents gastrointestinal syndrome, while neither loss of Noxa/Pmaip or co-deletion of Bid and Puma/Bbc3 has such a protective effect, identifiying BIM as rate-limiting apoptosis effector in mitotic cell death of the gastrointestinal epithelium. In contrast, only overexpression of anti-apoptotic BCL2, but none of the BH3-only protein deficiencies mentioned above, can mitigate myelosuppression. Our findings highlight tissue and cell type-specific survival dependencies in response to SAC perturbation in vivo.
Project description:Fanconi anemia (FA) is a heterogenous genetic disease with a high risk of cancer. The FA proteins are essential for interphase DNA damage repair; however, it is incompletely understood why FA-deficient cells also develop gross aneuploidy, leading to cancer. Here, we systematically evaluated the role of the FA proteins in chromosome segregation through functional RNAi screens and analysis of primary cells from patients with FA. We found that FA signaling is essential for the spindle assembly checkpoint and is therefore required for high-fidelity chromosome segregation and prevention of aneuploidy. Furthermore, we discovered that FA proteins differentially localize to key structures of the mitotic apparatus in a cell cycle-dependent manner. The essential role of the FA pathway in mitosis offers a mechanistic explanation for the aneuploidy and malignant transformation known to occur after disruption of FA signaling. Collectively, our findings provide insight into the genetically unstable cancers resulting from inactivation of the FA/BRCA pathway.
Project description:The Knl1-Mis12-Ndc80 (KMN) network is an essential component of the kinetochore-microtubule attachment interface, which is required for genomic stability in eukaryotes. However, little is known about plant Knl1 proteins because of their complex evolutionary history. Here, we cloned the Knl1 homolog from maize (Zea mays) and confirmed it as a constitutive central kinetochore component. Functional assays demonstrated their conserved role in chromosomal congression and segregation during nuclear division, thus causing defective cell division during kernel development when Knl1 transcript was depleted. A 145 aa region in the middle of maize Knl1, that did not involve the MELT repeats, was associated with the interaction of spindle assembly checkpoint (SAC) components Bub1/Mad3 family proteins 1 and 2 (Bmf1/2) but not with the Bmf3 protein. They may form a helical conformation with a hydrophobic interface with the TPR domain of Bmf1/2, which is similar to that of vertebrates. However, this region detected in monocots shows extensive divergence in eudicots, suggesting that distinct modes of the SAC to kinetochore connection are present within plant lineages. These findings elucidate the conserved role of the KMN network in cell division and a striking dynamic of evolutionary patterns in the SAC signaling and kinetochore network.
Project description:Disrupting microtubule dynamics with spindle poisons activates the spindle-assembly checkpoint (SAC) and induces mitotic cell death. However, mitotic exit can occur prematurely without proper chromosomal segregation or cytokinesis by a process termed mitotic slippage. It remains controversial whether mitotic slippage increases the cytotoxicity of spindle poisons or the converse. Altering the SAC induces either mitotic cell death or mitotic slippage. While knockout of MAD2-binding protein p31comet strengthened the SAC and promoted mitotic cell death, knockout of TRIP13 had the opposite effect of triggering mitotic slippage. We demonstrated that mitotic slippage prevented mitotic cell death caused by spindle poisons, but reduced subsequent long-term survival. Weakening of the SAC also reduced cell survival in response to spindle perturbation insufficient for triggering mitotic slippage, of which mitotic exit was characterized by displaced chromosomes during metaphase. In either mitotic slippage or mitotic exit with missegregated chromosomes, cell death occurred only after one cell cycle following mitotic exit and increased progressively during subsequent cell cycles. Consistent with these results, transient inhibition of the SAC using an MPS1 inhibitor acted synergistically with spindle perturbation in inducing chromosome missegregation and cytotoxicity. The specific temporal patterns of cell death after mitotic exit with weakened SAC may reconcile the contradictory results from many previous studies.
Project description:Regulation of macromolecular interactions by phosphorylation is crucial in signaling networks. In the spindle assembly checkpoint (SAC), which enables errorless chromosome segregation, phosphorylation promotes recruitment of SAC proteins to tensionless kinetochores. The SAC kinase Mps1 phosphorylates multiple Met-Glu-Leu-Thr (MELT) motifs on the kinetochore subunit Spc105/Knl1. The phosphorylated MELT motifs (MELT(P)) then promote recruitment of downstream signaling components. How MELT(P) motifs are recognized is unclear. In this study, we report that Bub3, a 7-bladed ?-propeller, is the MELT(P) reader. It contains an exceptionally well-conserved interface that docks the MELT(P) sequence on the side of the ?-propeller in a previously unknown binding mode. Mutations targeting the Bub3 interface prevent kinetochore recruitment of the SAC kinase Bub1. Crucially, they also cause a checkpoint defect, showing that recognition of phosphorylated targets by Bub3 is required for checkpoint signaling. Our data provide the first detailed mechanistic insight into how phosphorylation promotes recruitment of checkpoint proteins to kinetochores. DOI:http://dx.doi.org/10.7554/eLife.01030.001.
Project description:The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1-Bub3 and BubR1-Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1-Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/CCdc20) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1-Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment.
Project description:A mechanism is proposed by which speciation may occur without the need to postulate geographical isolation of the diverging populations. Closely related species that occupy overlapping or adjacent ecological niches often have an almost identical genome but differ by chromosomal rearrangements that result in reproductive isolation. The mitotic spindle assembly checkpoint normally functions to prevent gametes with non-identical karyotypes from forming viable zygotes. Unless gametes from two individuals happen to undergo the same chromosomal rearrangement at the same place and time, a most improbable situation, there has been no satisfactory explanation of how such rearrangements can propagate. Consideration of the dynamics of the spindle assembly checkpoint suggest that chromosomal fission or fusion events may occur that allow formation of viable heterozygotes between the rearranged and parental karyotypes, albeit with decreased fertility. Evolutionary dynamics calculations suggest that if the resulting heterozygous organisms have a selective advantage in an adjoining or overlapping ecological niche from that of the parental strain, despite the reproductive disadvantage of the population carrying the altered karyotype, it may accumulate sufficiently that homozygotes begin to emerge. At this point the reproductive disadvantage of the rearranged karyotype disappears, and a single population has been replaced by two populations that are partially reproductively isolated. This definition of species as populations that differ from other, closely related, species by karyotypic changes is consistent with the classical definition of a species as a population that is capable of interbreeding to produce fertile progeny. Even modest degrees of reproductive impairment of heterozygotes between two related populations may lead to speciation by this mechanism, and geographical isolation is not necessary for the process.
Project description:Tissue homeostasis requires accurate control of cell proliferation, differentiation and chromosome segregation. Drosophila sas-4 and aurA mutants present brain tumours with extra neuroblasts (NBs), defective mitotic spindle assembly and delayed mitosis due to activation of the spindle assembly checkpoint (SAC). Here we inactivate the SAC in aurA and sas-4 mutants to determine whether the generation of aneuploidy compromises NB proliferation. Inactivation of the SAC in the sas-4 mutant impairs NB proliferation and disrupts euploidy. By contrast, disrupting the SAC in the aurA mutant does not prevent NB amplification, tumour formation or chromosome segregation. The monitoring of Mad2 and cyclin B dynamics in live aurA NBs reveals that SAC satisfaction is not coupled to cyclin B degradation. Thus, the NBs of aurA mutants present delayed mitosis, with accurate chromosome segregation occurring in a SAC-independent manner. We report here the existence of an Aurora A-dependent mechanism promoting efficient, timed cyclin B degradation.