Project description:Inhibition of ?v?3 or expression of mutant p53 promotes invasion into fibronectin (FN)-containing extracellular matrix (ECM) by enhancing Rab-coupling protein (RCP)-dependent recycling of ?5?1 integrin. RCP and ?5?1 cooperatively recruit receptor tyrosine kinases, including EGFR1, to regulate their trafficking and downstream signaling via protein kinase B (PKB)/Akt, which, in turn, promotes invasive migration. In this paper, we identify a novel PKB/Akt substrate, RacGAP1, which is phosphorylated as a consequence of RCP-dependent ?5?1 trafficking. Phosphorylation of RacGAP1 promotes its recruitment to IQGAP1 at the tips of invasive pseudopods, and RacGAP1 then locally suppresses the activity of the cytoskeletal regulator Rac and promotes the activity of RhoA in this subcellular region. This Rac to RhoA switch promotes the extension of pseudopodial processes and invasive migration into FN-containing matrices, in a RhoA-dependent manner. Thus, the localized endocytic trafficking of ?5?1 within the tips of invasive pseudopods elicits signals that promote the reorganization of the actin cytoskeleton, protrusion, and invasion into FN-rich ECM.
Project description:PSD-95/SAP90/DLG/ZO-1 (PDZ) domain-mediated protein-protein interactions play important roles in regulating AMPA receptor trafficking and neuronal plasticity. GRIP1 and GRIP2 are homologous multi-PDZ domain-containing proteins that bind to the C-termini of AMPA-R GluA2 and GluA3 subunits. Previous attempts to determine the cellular roles of GRIP1 and GRIP2 in neurons have been complicated by nonspecific reagents, and by the embryonic lethality of conventional GRIP1 KO mice. To circumvent these issues we developed a conditional targeted deletion strategy to knock out GRIP1 in postnatal neurons derived from GRIP2 KO mice. Loss of GRIP1 and 2 did not affect normal AMPA-R steady-state trafficking and endocytosis, but strikingly impaired activity-dependent AMPA-R recycling. This previously uncharacterized role for GRIP1 appears to be mediated by novel interactions with the cellular trafficking machinery via the exocyst protein complex. Indeed, disruption of GRIP1-exocyst binding caused a strikingly similar deficit in AMPA-R recycling. Together these findings reveal a previously unidentified role for AMPA-R-GRIP1-exocyst protein complexes in activity-dependent AMPA-R trafficking.
Project description:The DNA damage response (DDR) is activated by oncogenic stress, but the mechanisms by which this occurs, and the particular DDR functions that constitute barriers to tumorigenesis, remain unclear. We established a mouse model of sporadic oncogene-driven breast tumorigenesis in a series of mutant mouse strains with specific DDR deficiencies to reveal a role for the Mre11 complex in the response to oncogene activation. We demonstrate that an Mre11-mediated DDR restrains mammary hyperplasia by effecting an oncogene-induced G2 arrest. Impairment of Mre11 complex functions promotes the progression of mammary hyperplasias into invasive and metastatic breast cancers, which are often associated with secondary inactivation of the Ink4a-Arf (CDKN2a) locus. These findings provide insight into the mechanism of DDR engagement by activated oncogenes and highlight genetic interactions between the DDR and Ink4a-Arf pathways in suppression of oncogene-driven tumorigenesis and metastasis.
Project description:The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (Claspin in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging strand recycling while another histone-binding mutation impaired leading strand recycling. We propose Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells. This SuperSeries is composed of the SubSeries listed below.
Project description:Isocitrate dehydrogenase (IDH) mutation is a common genetic abnormality in human malignancies characterized by remarkable metabolic reprogramming. Our present study demonstrated that IDH1-mutated cells showed elevated levels of reactive oxygen species and higher demands on Nrf2-guided glutathione de novo synthesis. Our findings showed that triptolide, a diterpenoid epoxide from Tripterygium wilfordii, served as a potent Nrf2 inhibitor, which exhibited selective cytotoxicity to patient-derived IDH1-mutated glioma cells in vitro and in vivo. Mechanistically, triptolide compromised the expression of GCLC, GCLM, and SLC7A11, which disrupted glutathione metabolism and established synthetic lethality with reactive oxygen species derived from IDH1 mutant neomorphic activity. Our findings highlight triptolide as a valuable therapeutic approach for IDH1-mutated malignancies by targeting the Nrf2-driven glutathione synthesis pathway.
Project description:Cell migration in 3D microenvironments is fundamental to development, homeostasis and the pathobiology of diseases such as cancer. Rab-coupling protein (RCP) dependent co-trafficking of α5β1 and EGFR1 promotes cancer cell invasion into fibronectin (FN) containing extracellular matrix (ECM), by potentiating EGFR1 signalling at the front of invasive cells. This promotes a switch in RhoGTPase signalling to inhibit Rac1 and activate a RhoA-ROCK-Formin homology domain-containing 3 (FHOD3) pathway and generate filopodial actin-spike protrusions which drive invasion. To further understand the signalling network that drives RCP-driven invasive migration, we generated a Boolean logical model based on existing network pathways/models, where each node can be interrogated by computational simulation. The model predicted an unanticipated feedback loop, whereby Raf/MEK/ERK signalling maintains suppression of Rac1 by inhibiting the Rac-activating Sos1-Eps8-Abi1 complex, allowing RhoA activity to predominate in invasive protrusions. MEK inhibition was sufficient to promote lamellipodia formation and oppose filopodial actin-spike formation, and led to activation of Rac and inactivation of RhoA at the leading edge of cells moving in 3D matrix. Furthermore, MEK inhibition abrogated RCP/α5β1/EGFR1-driven invasive migration. However, upon knockdown of Eps8 (to suppress the Sos1-Abi1-Eps8 complex), MEK inhibition had no effect on RhoGTPase activity and did not oppose invasive migration, suggesting that MEK-ERK signalling suppresses the Rac-activating Sos1-Abi1-Eps8 complex to maintain RhoA activity and promote filopodial actin-spike formation and invasive migration. Our study highlights the predictive potential of mathematical modelling approaches, and demonstrates that a simple intervention (MEK-inhibition) could be of therapeutic benefit in preventing invasive migration and metastasis.
Project description:Clathrin-mediated vesicle recycling in synapses is maintained by a unique set of endocytic proteins and interactions. We show that endophilin localizes in the vesicle pool at rest and in spirals at the necks of clathrin-coated pits (CCPs) during activity in lamprey synapses. Endophilin and dynamin colocalize at the base of the clathrin coat. Protein spirals composed of these proteins on lipid tubes in vitro have a pitch similar to the one observed at necks of CCPs in living synapses, and lipid tubules are thinner than those formed by dynamin alone. Tubulation efficiency and the amount of dynamin recruited to lipid tubes are dramatically increased in the presence of endophilin. Blocking the interactions of the endophilin SH3 domain in situ reduces dynamin accumulation at the neck and prevents the formation of elongated necks observed in the presence of GTPγS. Therefore, endophilin recruits dynamin to a restricted part of the CCP neck, forming a complex, which promotes budding of new synaptic vesicles.
Project description:Excessive gluconeogenesis can lead to hyperglycaemia and diabetes through as yet incompletely understood mechanisms. Herein, we show that hepatic ZBTB22 expression is increased in both diabetic clinical samples and mice, being affected by nutritional status and hormones. Hepatic ZBTB22 overexpression increases expression of gluconeogenic and lipogenic genes, heightening glucose output and lipids accumulation in mouse primary hepatocytes (MPHs), while ZBTB22 knockdown elicits opposite effects. Hepatic ZBTB22 overexpression induces glucose intolerance and insulin resistance, accompanied by moderate hepatosteatosis, while ZBTB22-deficient mice display improved energy expenditure, glucose tolerance, and insulin sensitivity, and reduced hepatic steatosis. Moreover, hepatic ZBTB22 knockout beneficially regulates gluconeogenic and lipogenic genes thereby alleviating glucose intolerance, insulin resistance, and liver steatosis in db/db mice. ZBTB22 directly binds to the promoter region of PCK1 to enhance its expression and increase gluconeogenesis. PCK1 silencing markedly abolishes the effects of ZBTB22 overexpression on glucose and lipid metabolism in both MPHs and mice, along with the corresponding changes in gene expression. In conclusion, targeting hepatic ZBTB22/PEPCK1 provides a potential therapeutic approach for diabetes.
Project description:The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (Claspin in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging strand recycling while another histone-binding mutation impaired leading strand recycling. We propose Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.
Project description:The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (Claspin in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging strand recycling while another histone-binding mutation impaired leading strand recycling. We propose Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.