Project description:Although much is known about injury-induced signals that increase rates of Drosophila melanogaster midgut intestinal stem cell (ISC) proliferation, it is largely unknown how ISC activity returns to quiescence after injury. In this paper, we show that the bone morphogenetic protein (BMP) signaling pathway has dual functions during midgut homeostasis. Constitutive BMP signaling pathway activation in the middle midgut mediated regional specification by promoting copper cell differentiation. In the anterior and posterior midgut, injury-induced BMP signaling acted autonomously in ISCs to limit proliferation and stem cell number after injury. Loss of BMP signaling pathway members in the midgut epithelium or loss of the BMP signaling ligand decapentaplegic from visceral muscle resulted in phenotypes similar to those described for juvenile polyposis syndrome, a human intestinal tumor caused by mutations in BMP signaling pathway components. Our data establish a new link between injury and hyperplasia and may provide insight into how BMP signaling mutations drive formation of human intestinal cancers.
Project description:The intronic hexanucleotide expansion in the C9orf72 gene is one of the leading causes of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS), two devastating neurodegenerative diseases. C9orf72 forms a heterodimer with SMCR8 (Smith-Magenis syndrome chromosome region, candidate 8) protein. However, the physiological function of SMCR8 remains to be characterized. Here we report that ablation of SMCR8 in mice results in splenomegaly with autoimmune phenotypes similar to that of C9orf72 deficiency. Furthermore, SMCR8 loss leads to a drastic decrease of C9orf72 protein levels. Many proteins involved in the macroautophagy-lysosome pathways are downregulated upon SMCR8 loss due to elevated activation of MTORC1 and AKT, which also leads to increased spine density in the Smcr8 knockout neurons. In summary, our studies demonstrate a key role of SMCR8 in regulating MTORC1 and AKT signaling and tissue homeostasis. Abbreviations: ALS: amyotrophic lateral sclerosis; C9orf72: chromosome 9 open reading frame 72; FTLD: frontotemporal lobar degeneration; GEF: guanosine nucleotide exchange factor; GTPase: guanosine tri-phosphatase; KO: knockout; MTOR: mechanistic target of rapamycin kinase; SMCR8: Smith-Magenis chromosome region, candidate 8; WDR41: WD repeat domain 41; WT: wild type.
Project description:We screen ion channels and transporters throughout the genome to identify those required by human melanoma cells but not by normal human melanocytes. We discover that Mucolipin-1 (MCOLN1), which encodes the lysosomal cation channel TRPML1, is preferentially required for the survival and proliferation of melanoma cells. Loss of MCOLN1/TRPML1 function impairs the growth of patient-derived melanomas in culture and in xenografts but does not affect the growth of human melanocytes. TRPML1 expression and macropinocytosis are elevated in melanoma cells relative to melanocytes. TRPML1 is required in melanoma cells to negatively regulate MAPK pathway and mTORC1 signaling. TRPML1-deficient melanoma cells exhibit decreased survival, proliferation, tumor growth, and macropinocytosis, as well as serine depletion and proteotoxic stress. All of these phenotypes are partially or completely rescued by mTORC1 inhibition. Melanoma cells thus increase TRPML1 expression relative to melanocytes to attenuate MAPK and mTORC1 signaling, to sustain macropinocytosis, and to avoid proteotoxic stress.
Project description:Ca2+ signaling cascades are essential for various immune cell functions. As such, most cells have negative regulators of Ca2+ homeostasis that strictly regulate cytosolic Ca2+ concentration, such as Ca2+-activated monovalent cation channels (CAMs). Transient receptor potential melastatin-related 5 channel (TRPM5), a CAM, is expressed in B lymphocytes. However, its functional role in the immune system is poorly understood. Here, we show that TRPM5 negatively modulates Ca2+ influx, thereby regulating lipopolysaccharide (LPS)-induced proliferative and inflammatory responses by B cells. Trpm5-deficient mice exhibited increased Ca2+ influx, enhanced proliferative responses, and increased production of inflammatory cytokines interleukin-6 and CXCL10 in LPS-stimulated B cells. However, Ca2+ chelation reduced LPS-induced cytokine production by Trpm5-deficient B cells. Furthermore, Trpm5-deficient mice showed exacerbation of endotoxic shock with high mortality. Our findings demonstrate the importance of TRPM5-dependent regulatory mechanisms in LPS-induced Ca2+ signaling of splenic B cells.
Project description:Ubiquitination and deubiquitination have emerged as critical regulatory processes in the virus-triggered type I interferon (IFN) induction pathway. In this study, we carried out a targeted siRNA screen of 54 ubiquitin-specific proteases (USPs) and identified USP25 as a negative regulator of the virus-triggered type I IFN signaling pathway. Overexpression of USP25 inhibited virus-induced activation of IFN-?, interferon regulation factor 3 (IRF3) and nuclear factor-kappa B (NF-?B), as well as the phosphorylation of IRF3 and NF-?B subunit p65. Furthermore, Knockdown of USP25 potentiated virus-induced induction of the IFN-?. In addition, detailed analysis demonstrated that USP25 cleaved lysine 48- and lysine 63-linked polyubiquitin chains in vitro and in vivo, and its deubiquitinating enzyme (DUB) activity, were dependent on a cysteine residue (Cys178) and a histidine residue (His607). USP25 mutants lacking DUB activity lost the ability to block virus-induced type I IFN to some degree. Mechanistically, USP25 deubiquitinated retinoic acid-inducible gene I (RIG-I), tumornecrosis factor (TNF) receptor-associated factor 2 (TRAF2), and TRAF6 to inhibit RIG-I-like receptor-mediated IFN signaling. Our findings suggest that USP25 is a novel DUB negatively regulating virus-induced type I IFN production.
Project description:Tight regulation of NF-?B signaling is essential for innate and adaptive immune responses, yet the molecular mechanisms responsible for its negative regulation are not completely understood. Here, we report that NLRX1, a NOD-like receptor family member, negatively regulates Toll-like receptor-mediated NF-?B activation. NLRX1 interacts with TRAF6 or I?B kinase (IKK) in an activation signal-dependent fashion. Upon LPS stimulation, NLRX1 is rapidly ubiquitinated, disassociates from TRAF6, and then binds to the IKK complex, resulting in inhibition of IKK? and IKK? phosphorylation and NF-?B activation. Knockdown of NLRX1 in various cell types markedly enhances IKK phosphorylation and the production of NF-?B-responsive cytokines after LPS stimulation. We further provide in vivo evidence that NLRX1 knockdown in mice markedly enhances susceptibility to LPS-induced septic shock and plasma IL-6 level. Our study identifies a previously unrecognized role for NLRX1 in the negative regulation of TLR-induced NF-?B activation by dynamically interacting with TRAF6 and the IKK complex.
Project description:During mycobacteria infection, anti-inflammatory responses allow the host to avoid tissue damage caused by overactivation of the immune system; however, little is known about the negative modulators that specifically control mycobacteria-induced immune responses. Here we demonstrate that integrin CD11b is a critical negative regulator of mycobacteria cord factor-induced macrophage-inducible C-type lectin (Mincle) signaling. CD11b deficiency resulted in hyperinflammation following mycobacterial infection. Activation of Mincle by mycobacterial components turns on not only the Syk signaling pathway but also CD11b signaling and induces formation of a Mincle-CD11b signaling complex. The activated CD11b recruits Lyn, SIRPα and SHP1, which dephosphorylate Syk to inhibit Mincle-mediated inflammation. Furthermore, the Lyn activator MLR1023 effectively suppressed Mincle signaling, indicating the possibility of Lyn-mediated control of inflammatory responses. These results describe a new role for CD11b in fine-tuning the immune response against mycobacterium infection.
Project description:We present evidence, using biochemical and cellular approaches, that the kinase, CK2, negatively controls signaling via Galpha(s) (or Galpha(olf)) coupled to dopamine D1 and adenosine A2A receptors. Pharmacological inhibition of CK2 or CK2 knockdown by RNAi lead to elevated cAMP levels in dopamine D1 receptor-activated neuroblastoma cells. Phosphorylation levels of protein kinase A substrates were increased in the presence of CK2 inhibitors in mouse striatal slices. The effect of D1 receptor and A2A receptor agonists on the phosphorylation of protein kinase A sites was potentiated upon CK2 inhibition. Furthermore, in cell lines, we observed that reduction in CK2 activity, pharmacologically or genetically, reduced the amount of D1 receptor that was internalized in response to dopamine. Finally, the beta subunit of CK2 was found to interact specifically with the Galpha(s) subunit through protein interaction analyses. Thus CK2 can inhibit G protein-coupled receptor action by enabling faster receptor internalization, possibly through a direct association with Galpha(s).
Project description:H1N1 virus-induced excessive inflammatory response contributes to severe disease and high mortality rates. There is currently no effective strategy against virus infection in lung. The present study evaluated the protective roles of a natural compound, lapiferin, in H1N1 virus-induced pulmonary inflammation in mice and in cultured human bronchial epithelial cells. Initially, Balb/C mice were grouped as Control, H1N1 infection (intranasally infected with 500 plaque-forming units of H1N1 virus), lapiferin (10 mg/kg), and H1N1+lapiferin (n=10/group). Lung histology, expression of inflammatory factors, and survival rates were assessed after 14 days of exposure. Administration of lapiferin significantly alleviated the virus-induced inflammatory infiltrate in lung tissues. Major pro-inflammatory cytokines, such as interleukin (IL)-1?, IL-6, and tumor necrosis factor (TNF)-?, were decreased at both mRNA and protein levels by lapiferin administration in the lung homogenate. Lapiferin also reduced inflammatory cell numbers in bronchoalveolar fluid. Mechanistically, lapiferin suppressed the transcriptional activity and protein expression of NF-?B p65, causing inhibition on NF-?B signaling. Pre-incubation of human bronchial epithelial cells with an NF-?B signaling specific activator, ceruletide, significantly blunted lapiferin-mediated inhibition of pro-inflammatory cytokines secretion in an air-liquid-interface cell culture experiment. Activation of NF-?B signaling also blunted lapiferin-ameliorated inflammatory infiltrate in lungs. These results suggested that lapiferin was a potent natural compound that served as a therapeutic agent for virus infection in the lung.
Project description:Innate immunity to nucleic acids forms the backbone for anti-viral immunity and several inflammatory diseases. Upon sensing cytosolic viral RNA, retinoic acid-inducible gene-I-like receptors (RLRs) interact with the mitochondrial antiviral signaling protein (MAVS) and activate TANK-binding kinase 1 (TBK1) to induce type I interferon (IFN-I). TRAF3-interacting protein 3 (TRAF3IP3, T3JAM) is essential for T and B cell development. It is also well-expressed by myeloid cells, where its role is unknown. Here we report that TRAF3IP3 suppresses cytosolic poly(I:C), 5'ppp-dsRNA, and vesicular stomatitis virus (VSV) triggers IFN-I expression in overexpression systems and Traf3ip3-/- primary myeloid cells. The mechanism of action is through the interaction of TRAF3IP3 with endogenous TRAF3 and TBK1. This leads to the degradative K48 ubiquitination of TBK1 via its K372 residue in a DTX4-dependent fashion. Mice with myeloid-specific gene deletion of Traf3ip3 have increased RNA virus-triggered IFN-I production and reduced susceptibility to virus. These results identify a function of TRAF3IP3 in the regulation of the host response to cytosolic viral RNA in myeloid cells.