Project description:In metazoans the endoplasmic reticulum (ER) changes during the cell cycle, with the nuclear envelope (NE) disassembling and reassembling during mitosis and the peripheral ER undergoing extensive remodeling. Here we address how ER morphology is generated during the cell cycle using crude and fractionated Xenopus laevis egg extracts. We show that in interphase the ER is concentrated at the microtubule (MT)-organizing center by dynein and is spread by outward extension of ER tubules through their association with plus ends of growing MTs. Fusion of membranes into an ER network is dependent on the guanosine triphosphatase atlastin (ATL). NE assembly requires fusion by both ATL and ER-soluble N-ethyl-maleimide-sensitive factor adaptor protein receptors. In mitotic extracts, the ER converts into a network of sheets connected by ER tubules and loses most of its interactions with MTs. Together, these results indicate that fusion of ER membranes by ATL and interaction of ER with growing MT ends and dynein cooperate to generate distinct ER morphologies during the cell cycle.
Project description:BACKGROUND:Cell division is central to the physiology and pathology of all eukaryotic organisms. The molecular machinery underpinning the cell cycle has been studied extensively in a number of species and core aspects of it have been found to be highly conserved. Similarly, the transcriptional changes associated with this pathway have been studied in different organisms and different cell types. In each case hundreds of genes have been reported to be regulated, however there seems to be little consensus in the genes identified across different studies. In a recent comparison of transcriptomic studies of the cell cycle in different human cell types, only 96 cell cycle genes were reported to be the same across all studies examined. RESULTS:Here we perform a systematic re-examination of published human cell cycle expression data by using a network-based approach to identify groups of genes with a similar expression profile and therefore function. Two clusters in particular, containing 298 transcripts, showed patterns of expression consistent with cell cycle occurrence across the four human cell types assessed. CONCLUSIONS:Our analysis shows that there is a far greater conservation of cell cycle-associated gene expression across human cell types than reported previously, which can be separated into two distinct transcriptional networks associated with the G1/S-S and G2-M phases of the cell cycle. This work also highlights the benefits of performing a re-analysis on combined datasets.
Project description:Coordination of cell growth with division is essential for proper cell function. In budding yeast, although some molecular mechanisms responsible for cell size control during G1 have been elucidated, the mechanism by which cell size homeostasis is established remains to be discovered. Here, we developed a new technique based on quantification of histone levels to monitor cell cycle progression in individual cells with unprecedented accuracy. Our analysis establishes the existence of a mechanism controlling bud size in G2/M that prevents premature onset of anaphase, and controls the overall size variability. While most G1 mutants do not display impaired size homeostasis, mutants in which cyclin B-Cdk regulation is altered display large size variability. Our study thus demonstrates that size homeostasis is not controlled by a G1-specific mechanism alone but is likely to be an emergent property resulting from the integration of several mechanisms that coordinate cell and bud growth with division.
Project description:Cyclin-dependent kinase (Cdk) phosphorylation of the Retinoblastoma protein (Rb) drives cell proliferation through inhibition of Rb complexes with E2F transcription factors and other regulatory proteins. We present the first structures of phosphorylated Rb that reveal the mechanism of its inactivation. S608 phosphorylation orders a flexible "pocket" domain loop such that it mimics and directly blocks E2F transactivation domain (E2F(TD)) binding. T373 phosphorylation induces a global conformational change that associates the pocket and N-terminal domains (RbN). This first multidomain Rb structure demonstrates a novel role for RbN in allosterically inhibiting the E2F(TD)-pocket association and protein binding to the pocket "LxCxE" site. Together, these structures detail the regulatory mechanism for a canonical growth-repressive complex and provide a novel example of how multisite Cdk phosphorylation induces diverse structural changes to influence cell cycle signaling.
Project description:To better characterize group IE like human breast cancer based on the gene profiles of estrogen actions through estrogen receptor alpha (ER alpha), we identified an ER alpha transcriptional regulatory network for cell cycle in silico. We used two datasets from cell line (Data 1) and clinical samples (Data 2), respectively. Analyses on Data 1 via trajectory clustering and Pathway-Express confirmed the significant estrogen effect on up-regulating cell cycle activities. The gene expression relationships between ER alpha and cell cycle genes were re-identified in Data 2 by three statistical methods – Galton-Pearson’s correlation coefficient, Student’s t-test and the coefficient of intrinsic dependence. They were mostly (56.09%)(46/82) re-confirmed by literature search. E2F1 was found to be the major ER alpha target in regulating cell cycle gene expressions (83.72%)(36/43) via suppressive mode. However, enhanced cell cycle progression via up-regulating some cell cycle genes was predicted in silico possibly involving E2F2, in part. Both tumorigenic and tumor suppressing activities indicated by this network were predicted. This network clearly provides a robust way for uncovering estrogen actions in an ER(+) subtype specific manner.
Project description:To better characterize group IE like human breast cancer based on the gene profiles of estrogen actions through estrogen receptor alpha (ER alpha), we identified an ER alpha transcriptional regulatory network for cell cycle in silico. We used two datasets from cell line (Data 1) and clinical samples (Data 2), respectively. Analyses on Data 1 via trajectory clustering and Pathway-Express confirmed the significant estrogen effect on up-regulating cell cycle activities. The gene expression relationships between ER alpha and cell cycle genes were re-identified in Data 2 by three statistical methods – Galton-Pearson’s correlation coefficient, Student’s t-test and the coefficient of intrinsic dependence. They were mostly (56.09%)(46/82) re-confirmed by literature search. E2F1 was found to be the major ER alpha target in regulating cell cycle gene expressions (83.72%)(36/43) via suppressive mode. However, enhanced cell cycle progression via up-regulating some cell cycle genes was predicted in silico possibly involving E2F2, in part. Both tumorigenic and tumor suppressing activities indicated by this network were predicted. This network clearly provides a robust way for uncovering estrogen actions in an ER(+) subtype specific manner. Experiment Overall Design: Two clinical datasets were used in this study. One, the 37 clinical arrays (abbreviated as 37A) consist of 26 A for patients positive in estrogen receptor alpha (ER) and in progesterone receptor (PR) immunohistochemical stain (IHC) and 11A for patients negative in ER IHC. This dataset was designated as Data 2. The 31 clinical arrays (31A) consist of 20A for patients positive in ER status but negative in PR status and 11A which are the same as in 37A. This dataset was used for data comparison. All the signals from the mRNA profile of each sample in the experiments were normalized using the internal control RNA- Stratagene's human common reference RNA via statistical method 'rank consistant lowess. Finally, those ratios were transformed by Log2.
Project description:Regulating the transition of cells such as T lymphocytes from quiescence (G(0)) into an activated, proliferating state involves initiation of cellular programs resulting in entry into the cell cycle (proliferation), the growth cycle (blastogenesis, cell size) and effector (functional) activation. We show the first proteomic analysis of protein interaction networks activated during entry into the first cell cycle from G(0). We also provide proof of principle that blastogenesis and proliferation programs are separable in primary human T cells. We employed a proteomic profiling method to identify large-scale changes in chromatin/nuclear matrix-bound and unbound proteins in human T lymphocytes during the transition from G(0) into the first cell cycle and mapped them to form functionally annotated, dynamic protein interaction networks. Inhibiting the induction of two proteins involved in two of the most significantly upregulated cellular processes, ribosome biogenesis (eIF6) and hnRNA splicing (SF3B2/SF3B4), showed, respectively, that human T cells can enter the cell cycle without growing in size, or increase in size without entering the cell cycle.
Project description:Durable control of invasive solid tumors necessitates identifying therapeutic resistance mechanisms and effective drug combinations. In this work, we used a network-based mathematical model to identify sensitivity regulators and drug combinations for the PI3Kα inhibitor alpelisib in estrogen receptor positive (ER+) PIK3CA-mutant breast cancer. The model-predicted efficacious combination of alpelisib and BH3 mimetics, for example, MCL1 inhibitors, was experimentally validated in ER+ breast cancer cell lines. Consistent with the model, FOXO3 downregulation reduced sensitivity to alpelisib, revealing a novel potential resistance mechanism. Cell line-specific sensitivity to combinations of alpelisib and BH3 mimetics depended on which BCL2 family members were highly expressed. On the basis of these results, newly developed cell line-specific network models were able to recapitulate the observed differential response to alpelisib and BH3 mimetics. This approach illustrates how network-based mathematical models can contribute to overcoming the challenge of cancer drug resistance. SIGNIFICANCE: Network-based mathematical models of oncogenic signaling and experimental validation of its predictions can identify resistance mechanisms for targeted therapies, as this study demonstrates for PI3Kα-specific inhibitors in breast cancer.
Project description:MicroRNAs (miRNAs) are a class of small regulatory RNAs that are thought to be involved in diverse biological processes by regulating gene expression. Numerous miRNAs have been identified in various species, and many more miRNAs remain to be detected. Generally, hundreds of mRNAs have been predicted to be potential targets of one miRNA, so it is a great challenge to identify the genuine miRNA targets. Here, we generated the cell lines depleted of Drosha protein and screened dozens of transcripts (including Cyclin D1) regulated potentially by miRNA-mediated RNA silencing pathway. On the basis of miRNA expressing library, we established a miRNA targets reverse screening method by using luciferase reporter assay. By this method, we found that the expression of Cyclin D1 (CCND1) was regulated by miR-16 family directly, and miR-16 induced G1 arrest in A549 cells partially by CCND1. Furthermore, several other cell cycle genes were revealed to be regulated by miR-16 family, including Cyclin D3 (CCND3), Cyclin E1 (CCNE1) and CDK6. Taken together, our data suggests that miR-16 family triggers an accumulation of cells in G0/G1 by silencing multiple cell cycle genes simultaneously, rather than the individual target.
Project description:The cellular protein-protein interaction network that governs cellular proliferation (cell cycle) is highly complex. Here, we have developed a novel computational model of human mitotic cell cycle, integrating diverse cellular mechanisms, for the purpose of generating new hypotheses and predicting new experiments designed to help understand complex diseases. The pathogenic state investigated is infection by a human herpesvirus. The model starts at mitotic entry initiated by the activities of Cyclin-dependent kinase 1 (CDK1) and Polo-like kinase 1 (PLK1), transitions through Anaphase-promoting complex (APC/C) bound to Cell division cycle protein 20 (CDC20), and ends upon mitotic exit mediated by APC/C bound to CDC20 homolog 1 (CDH1). It includes syntheses and multiple mechanisms of degradations of the mitotic proteins. Prior to this work, no such comprehensive model of the human mitotic cell cycle existed. The new model is based on a hybrid framework combining Michaelis-Menten and mass action kinetics for the mitotic interacting reactions. It simulates temporal changes in 12 different mitotic proteins and associated protein complexes in multiple states using 15 interacting reactions and 26 ordinary differential equations. We have defined model parameter values using both quantitative and qualitative data and using parameter values from relevant published models, and we have tested the model to reproduce the cardinal features of human mitosis determined experimentally by numerous laboratories. Like cancer, viruses create dysfunction to support infection. By simulating infection of the human herpesvirus, cytomegalovirus, we hypothesize that virus-mediated disruption of APC/C is necessary to establish a unique mitotic collapse with sustained CDK1 activity, consistent with known mechanisms of virus egress. With the rapid discovery of cellular protein-protein interaction networks and regulatory mechanisms, we anticipate that this model will be highly valuable in helping us to understand the network dynamics and identify potential points of therapeutic interventions.