Project description:The limb- and heart-specific Tbx5 transcription factor coexpresses with and directly binds to the novel PDZ-LIM domain protein, LMP4. LMP4 is distributed in the cytoplasm associated with the actin cytoskeleton. In the presence of LMP4, Tbx5 shuttles dynamically between the nucleus and cytoplasm and, in a complex with LMP4, localizes to actin filaments. Nuclear and cytoplasmic Tbx5 distribution in developing chicken wings suggests the functional significance of the LMP4-Tbx5 interaction. In primary epicardial cells, we demonstrate that Tbx5 protein subcellular relocalization can be stimulated by external signals that induce cell differentiation. To test whether the relocalization from nuclear to cytoplasmic sites interferes with downstream gene expression, we used limb-specific Fgf10 and heart-specific Anf promoter-luciferase reporters and demonstrate that LMP4 acts as a repressor of Tbx5 activity. These studies reveal a previously unknown mechanism for Tbx transcription factor regulation in vertebrate limb and heart development and provide a better understanding of the molecular basis of hand/heart birth defects associated with Tbx5 mutations.
Project description:BackgroundEven though liver kinase B1 (LKB1) is usually described as a tumor suppressor in a wide variety of tissues, it has been shown that LKB1 aberrant expression is associated with bad prognosis in Hepatocellular Carcinoma (HCC).MethodsHerein we have overexpressed LKB1 in human hepatoma cells and by using histidine pull-down assay we have investigated the role of the hypoxia-related post-translational modification of Small Ubiquitin-related Modifier (SUMO)ylation in the regulation of LKB1 oncogenic role. Molecular modelling between LKB1 and its interactors, involved in regulation of LKB1 nucleocytoplasmic shuttling and LKB1 activity, was performed. Finally, high affinity SUMO binding entities-based technology were used to validate our findings in a pre-clinical mouse model and in clinical HCC.FindingsWe found that in human hepatoma cells under hypoxic stress, LKB1 overexpression increases cell viability and aggressiveness in association with changes in LKB1 cellular localization. Moreover, by using site-directed mutagenesis, we have shown that LKB1 is SUMOylated by SUMO-2 at Lys178 hampering LKB1 nucleocytoplasmic shuttling and fueling hepatoma cell growth. Molecular modelling of SUMO modified LKB1 further confirmed steric impedance between SUMOylated LKB1 and the STe20-Related ADaptor cofactor (STRADα), involved in LKB1 export from the nucleus. Finally, we provide evidence that endogenous LKB1 is modified by SUMO in pre-clinical mouse models of HCC and clinical HCC, where LKB1 SUMOylation is higher in fast growing tumors.InterpretationOverall, SUMO-2 modification of LKB1 at Lys178 mediates LKB1 cellular localization and its oncogenic role in liver cancer. FUND: This work was supported by grants from NIH (US Department of Health and Human services)-R01AR001576-11A1 (J.M.M and M.L.M-C.), Gobierno Vasco-Departamento de Salud 2013111114 (to M.L.M.-C), ELKARTEK 2016, Departamento de Industria del Gobierno Vasco (to M.L.M.-C), MINECO: SAF2017-87301-R and SAF2014-52097-R integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovación 2013-2016 cofinanciado con Fondos FEDER (to M.L.M.-C and J.M.M., respectively), BFU2015-71017/BMC MINECO/FEDER, EU (to A.D.Q. and I.D.M.), BIOEF (Basque Foundation for Innovation and Health Research): EITB Maratoia BIO15/CA/014; Instituto de Salud Carlos III:PIE14/00031, integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovacion 2013-2016 cofinanciado con Fondos FEDER (to M.L.M.-C and J.M.M), Asociación Española contra el Cáncer (T.C.D, P·F-T and M.L.M-C), Daniel Alagille award from EASL (to T.C.D), Fundación Científica de la Asociación Española Contra el Cancer (AECC Scientific Foundation) Rare Tumor Calls 2017 (to M.L.M and M.A), La Caixa Foundation Program (to M.L.M), Programma di Ricerca Regione-Università 2007-2009 and 2011-2012, Regione Emilia-Romagna (to E.V.), Ramón Areces Foundation and the Andalusian Government (BIO-198) (A.D.Q. and I.D.M.), ayudas para apoyar grupos de investigación del sistema Universitario Vasco IT971-16 (P.A.), MINECO:SAF2015-64352-R (P.A.), Institut National du Cancer, FRANCE, INCa grant PLBIO16-251 (M.S.R.), MINECO - BFU2016-76872-R to (E.B.). Work produced with the support of a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (M.V-R). Finally, Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos III. We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644). Funding sources had no involvement in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.
Project description:Signaling via the large protocadherin Fat (Ft), regulated in part by its binding partner Dachsous (Ds) and the Golgi-resident kinase Four-jointed (Fj), is required for a variety of developmental functions in Drosophila. Ft and, to a lesser extent, Ds suppress overgrowth of the imaginal discs from which appendages develop and regulate the Hippo pathway [1-5] (reviewed in [6]). Ft, Ds, and Fj are also required for normal planar cell polarity (PCP) in the wing, abdomen, and eye and for the normal patterning of appendages, including the spacing of crossveins in the wing and the segmentation of the leg tarsus (reviewed in [7-9]). Ft signaling was recently shown to be negatively regulated by the atypical myosin Dachs [10, 11]. We identify here an additional negative regulator of Ft signaling in growth control, PCP, and appendage patterning, the Approximated (App) protein. We show that App encodes a member of the DHHC family, responsible for the palmitoylation of selected cytoplasmic proteins, and provide evidence that App acts by controlling the normal subcellular localization and activity of Dachs.
Project description:Myosin IIIa (Myo3A) transports cargo to the distal end of actin protrusions and contains a kinase domain that is thought to autoregulate its activity. Because Myo3A tends to cluster at the tips of actin protrusions, we investigated whether intermolecular phosphorylation could regulate Myo3A biochemical activity, cellular localization, and cellular function. Inactivation of Myo3A 2IQ kinase domain with the point mutation K50R did not alter maximal ATPase activity, whereas phosphorylation of Myo3A 2IQ resulted in reduced maximal ATPase activity and actin affinity. The rate and degree of Myo3A 2IQ autophosphorylation was unchanged by the presence of actin but was found to be dependent upon Myo3A 2IQ concentration within the range of 0.1 to 1.2 ?m, indicating intermolecular autophosphorylation. In cultured cells, we observed that the filopodial tip localization of Myo3A lacking the kinase domain decreased when co-expressed with kinase-active, full-length Myo3A. The cellular consequence of reduced Myo3A tip localization was decreased filopodial density along the cell periphery, identifying a novel cellular function for Myo3A in mediating the formation and stability of actin-based protrusions. Our results suggest that Myo3A motor activity is regulated through a mechanism involving concentration-dependent autophosphorylation. We suggest that this regulatory mechanism plays an essential role in mediating the transport and actin bundle formation/stability functions of Myo3A.
Project description:Cell migration is a complex process that involves coordinated changes in membrane transport and actin cytoskeleton dynamics. Ras-like small monomeric GTPases, such as Rap2, play a key role in regulating actin cytoskeleton dynamics and cell adhesions. However, how Rap2 function, localization, and activation are regulated during cell migration is not fully understood. We previously identified the small GTPase Rab40b as a regulator of breast cancer cell migration. Rab40b contains a suppressor of cytokine signaling (SOCS) box, which facilitates binding to Cullin5, a known E3 ubiquitin ligase component responsible for protein ubiquitylation. In this study, we show that the Rab40b/Cullin5 complex ubiquitylates Rap2. Importantly, we demonstrate that ubiquitylation regulates Rap2 activation as well as recycling of Rap2 from the endolysosomal compartment to the lamellipodia of migrating breast cancer cells. Based on these data, we propose that Rab40b/Cullin5 ubiquitylates and regulates Rap2-dependent actin dynamics at the leading edge, a process that is required for breast cancer cell migration and invasion.
Project description:In Drosophila melanogaster the reciprocal "Ping-Pong" cycle of PIWI-interacting RNA (piRNA)-directed RNA cleavage catalyzed by the endonuclease (or "Slicer") activities of the PIWI proteins Aubergine (Aub) and Argonaute3 (AGO3) has been proposed to expand the secondary piRNA population. However, the role of AGO3/Aub Slicer activity in piRNA amplification remains to be explored. We show that AGO3 Slicer activity is essential for piRNA amplification and that AGO3 inhibits the homotypic Aub:Aub Ping-Pong process in a Slicer-independent manner. We also find that expression of an AGO3 Slicer mutant causes ectopic accumulation of Armitage, a key component in the primary piRNA pathway, in the Drosophila melanogaster germline granules known as nuage. AGO3 also coexists and interacts with Armitage in the mitochondrial fraction. Furthermore, AGO3 acts in conjunction with the mitochondria-associated protein Zucchini to control the dynamic subcellular localization of Armitage between mitochondria and nuage in a Slicer-dependent fashion. Collectively, our findings uncover a new mechanism that couples mitochondria with nuage to regulate secondary piRNA amplification.
Project description:Manipulation of the subcellular localization of transcription factors by preventing their shuttling via the nuclear pore complex (NPC) emerges as a novel therapeutic strategy against cancer. One transmembrane component of the NPC is POM121, encoded by a tandem gene locus POM121A/C on chromosome 7. Overexpression of POM121 is associated with metabolic diseases (e.g., diabetes) and unfavorable clinical outcome in patients with colorectal cancer (CRC). Peroxisome proliferator-activated receptor-gamma (PPARγ) is a transcription factor with anti-diabetic and anti-tumoral efficacy. It is inhibited by export from the nucleus to the cytosol via the RAS-RAF-MEK1/2-ERK1/2 signaling pathway, a major oncogenic driver of CRC. We therefore hypothesized that POM121 participates in the transport of PPARγ across the NPC to regulate its transcriptional activity on genes involved in metabolic and tumor control. We found that POM121A/C mRNA was enriched and POM121 protein co-expressed with PPARγ in tissues from CRC patients conferring poor prognosis. Its interactome was predicted to include proteins responsible for tumor metabolism and immunity, and in-silico modeling provided insights into potential 3D structures of POM121. A peptide region downstream of the nuclear localization sequence (NLS) of POM121 was identified as a cytoplasmic interactor of PPARγ. POM121 positivity correlated with the cytoplasmic localization of PPARγ in patients with KRAS mutant CRC. In contrast, POM121A/C silencing by CRISPR/Cas9 sgRNA or siRNA enforced nuclear accumulation of PPARγ and activated PPARγ target genes promoting lipid metabolism and cell cycle arrest resulting in reduced proliferation of human CRC cells. Our data suggest the POM121-PPARγ axis as a potential drugable target in CRC.
Project description:The Forkhead Box O (FOXO) transcription factors regulate diverse cellular processes, and in skeletal muscle are both necessary and sufficient for muscle atrophy. Although the regulation of FOXO by Akt is well evidenced in skeletal muscle, the current study demonstrates that FOXO is also regulated in muscle via the histone acetyltransferase (HAT) activities of p300/CREB-binding protein (CBP). Transfection of rat soleus muscle with a dominant-negative p300, which lacks HAT activity and inhibits endogenous p300 HAT activity, increased FOXO reporter activity and induced transcription from the promoter of a bona fide FOXO target gene, atrogin-1. Conversely, increased HAT activity via transfection of either wild-type (WT) p300 or WT CBP repressed FOXO activation in vivo in response to muscle disuse, and in C2C12 cells in response to dexamethasone and acute starvation. Importantly, manipulation of HAT activity differentially regulated the expression of various FOXO target genes. Cotransfection of FOXO1, FOXO3a, or FOXO4 with the p300 constructs further identified p300 HAT activity to also differentially regulate the activity of the FOXO homologues. Markedly, decreased HAT activity strongly increased FOXO3a transcriptional activity, while increased HAT activity repressed FOXO3a activity and prevented its nuclear localization in response to nutrient deprivation. In contrast, p300 increased FOXO1 nuclear localization. In summary, this study provides the first evidence to support the acetyltransferase activities of p300/CBP in regulating FOXO signaling in skeletal muscle and suggests that acetylation may be an important mechanism to differentially regulate the FOXO homologues and dictate which FOXO target genes are activated in response to varying atrophic stimuli.
Project description:The trimeric CAK complex functions in cell cycle control by phosphorylating and activating Cdks while TFIIH-linked CAK functions in transcription. CAK also associates into a tetramer with Xpd, and our analysis of young Drosophila embryos that do not require transcription now suggests a cell cycle function for this interaction. xpd is essential for the coordination and rapid progression of the mitotic divisions during the late nuclear division cycles. Lack of Xpd also causes defects in the dynamics of the mitotic spindle and chromosomal instability as seen in the failure to segregate chromosomes properly during ana- and telophase. These defects appear to be also nucleotide excision repair (NER)-independent. In the absence of Xpd, misrouted spindle microtubules attach to chromosomes of neighboring mitotic figures, removing them from their normal location and causing multipolar spindles and aneuploidy. Lack of Xpd also causes changes in the dynamics of subcellular and temporal distribution of the CAK component Cdk7 and local mitotic kinase activity. xpd thus functions normally to re-localize Cdk7(CAK) to different subcellular compartments, apparently removing it from its cell cycle substrate, the mitotic Cdk. This work proves that the multitask protein Xpd also plays an essential role in cell cycle regulation that appears to be independent of transcription or NER. Xpd dynamically localizes Cdk7/CAK to and away from subcellular substrates, thereby controlling local mitotic kinase activity. Possibly through this activity, xpd controls spindle dynamics and chromosome segregation in our model system. This novel role of xpd should also lead to new insights into the understanding of the neurological and cancer aspects of the human XPD disease phenotypes.
Project description:Caspase-1 and caspase-11 are proinflammatory caspases that regulate cytokine production and leukocyte migration during pathogen infection. In an attempt to identify new intracellular regulators of caspase-11, we found that Flightless-I, a member of the gelsolin superfamily of actin-remodeling proteins, interacts and regulates both caspase-11 and caspase-1. Flightless-I targets caspase-11 to the Triton X-100-insoluble cytoskeleton fraction and the cell leading edge. In addition, Flightless-I inhibits caspase-1 activation and caspase-1-mediated interleukine-1beta (IL-1beta) maturation. The physiological relevance of these findings is supported by the opposing effects of Flightless-I overexpression and knockdown on caspase-1 activity and IL-1beta maturation. Our results suggest that Flightless-I may be a bona fide caspase-1 inhibitor that acts through a mechanism similar to that of cytokine response modifier A, a potent caspase-1 inhibitor from the cowpox virus. Our study provides a new mechanism controlling the localization and activation of proinflammatory caspases.