Project description:Cell interactions with the extracellular matrix (ECM) can regulate multiple cellular activities and the matrix itself in dynamic, bidirectional processes. One such process is local proteolytic modification of the ECM. Invadopodia of tumor cells are actin-rich proteolytic protrusions that locally degrade matrix molecules and mediate invasion. We report that a novel high-density fibrillar collagen (HDFC) matrix is a potent inducer of invadopodia, both in carcinoma cell lines and in primary human fibroblasts. In carcinoma cells, HDFC matrix induced formation of invadopodia via a specific integrin signaling pathway that did not require growth factors or even altered gene and protein expression. In contrast, phosphoproteomics identified major changes in a complex phosphosignaling network with kindlin2 serine phosphorylation as a key regulatory element. This kindlin2-dependent signal transduction network was required for efficient induction of invadopodia on dense fibrillar collagen and for local degradation of collagen. This novel phosphosignaling mechanism regulates cell surface invadopodia via kindlin2 for local proteolytic remodeling of the ECM.
Project description:We describe the novel synthesis Ag2S nanoparticles (NPs) by using a sonochemical method and reveal the effects of NIR irradiation on the enhancement of the production of collagen through NIR-emitting Ag2S NPs. We also synthesized Li-doped Ag2S NPs that exhibited significantly increased emission intensity because of their enhanced absorption ability in the UV - NIR region.
Project description:The hemidesmosomal transmembrane component collagen XVII (ColXVII) plays an important role in the anchorage of the epidermis to the underlying basement membrane. However, this adhesion protein seems to be also involved in the regulation of keratinocyte migration, since its expression in these cells is strongly elevated during reepithelialization of acute wounds and in the invasive front of squamous cell carcinoma, while its absence in ColXVII-deficient keratinocytes leads to altered cell motility. Using a genetic model of murine Col17a1?/? keratinocytes we elucidated ColXVII mediated signaling pathways in cell adhesion and migration. Col17a1?/? keratinocytes exhibited increased spreading on laminin 332 and accelerated, but less directed cell motility. These effects were accompanied by increased expression of the integrin subunits ?4 and ?1. The migratory phenotype, as evidenced by formation of multiple unstable lamellipodia, was associated with enhanced phosphoinositide 3-kinase (PI3K) activity. Dissection of the signaling pathway uncovered enhanced phosphorylation of the ?4 integrin subunit and the focal adhesion kinase (FAK) as activators of PI3K. This resulted in elevated Rac1 activity as a downstream consequence. These results provide mechanistic evidence that ColXVII coordinates keratinocyte adhesion and directed motility by interfering integrin dependent PI3K activation and by stabilizing lamellipodia at the leading edge of reepithelializing wounds and in invasive squamous cell carcinoma.
Project description:Multiple signaling pathways including ERK, PI3K-Akt, and NF-κB, which are essential for onset and development of cancer, can be activated by intracellularly sustained high levels of H2O2 provided by elevated activity and expression of copper/zinc superoxide dismutase (SOD1) that catalyzes the dismutation of O2 •- into H2O2. Here, tests performed by the utilization of our designed specific SOD1 inhibitor LD100 on cancer and normal cells reveal that the signaling pathways and their crosstalk to support cancer cell growth are repressed, but the signaling pathways to promote cancer cell cycle arrest and apoptosis are stimulated by specific SOD1 inhibition-mediated ROS changes. These regulated pathways constitute an ROS signaling network that determines the fate of cancer cells. This ROS signaling network is also regulated in SOD1 knockdown cells. These findings might facilitate disclosure of action mechanisms by copper-chelating anticancer agents and design of SOD1-targeting and ROS signaling pathway-interfering anticancer small molecules.
Project description:Background: Gastrodin has been widely used clinically in China as an antihypertensive drug. However, its effect on hypertensive renal injury is yet to be elucidated. The current study aimed to investigate the effects of gastrodin on hypertensive renal injury and its underlying mechanisms by network pharmacology analysis and validation in vivo and in vitro. Methods: A total of 10 spontaneously hypertensive rats (SHRs) were randomly categorized into the following two groups: SHR and SHR + Gastrodin groups. Wistar Kyoto (WKY) rats were used as the control group (n = 5). The SHR + Gastrodin group was intragastrically administered gastrodin (3.5 mg/kg/day), and the rats in both WKY and SHR groups were intragastrically administered an equal amount of double-distilled water for 10 weeks. Hematoxylin-eosin, Masson's trichrome, and Sirius red staining were used to detect the pathological changes and collagen content in the renal tissues. Network pharmacology analysis was performed to explore its potential targets and related pathways. In vitro, the CCK-8 assay was used to determine the cell viability. Immunohistochemistry and western-blotting analyses were employed to assess the protein expression associated with renal fibrosis and transforming growth factor-β1 (TGF-β1) pathway-related proteins in the renal tissues or in TGF-β1-stimulated rat kidney fibroblast cell lines (NRK-49F). Results: Gastrodin treatment attenuates renal injury and pathological alterations in SHRs, including glomerular sclerosis and atrophy, epithelial cell atrophy, and tubular dilation. Gastrodin also reduced the accumulation of collagen in the renal tissues of SHRs, which were confirmed by downregulation of α-SMA, collagen I, collagen III protein expression. Network pharmacology analysis identified TGFB1 and SMAD2 as two of lead candidate targets of gastrodin on against hypertensive renal injury. Consistently, gastrodin treatment downregulated the increase of the protein expression of TGF-β1, and ratios of both p-Smad2/Smad2 and p-Samd3/Smad3 in renal tissues of SHRs. In vitro, gastrodin (25-100 μM) treatment significantly reversed the upregulation of α-SMA, fibronectin, collagen I, as well as p-Smad2 and p-Smad3 protein expressions without affecting the cell viability of TGF-β1 stimulated NRK-49F cells. Conclusion: Gastrodin treatment significantly attenuates hypertensive renal injury and renal fibrosis and suppresses TGF-β1/Smad2/3 signaling in vivo and in vitro.
Project description:Body size is a tightly regulated phenotype in metazoans that depends on both intrinsic and extrinsic factors. While signaling pathways are known to control organ and body size, the downstream effectors that mediate their effects remain poorly understood. In the nematode Caenorhabditis elegans, a Bone Morphogenetic Protein (BMP)-related signaling pathway is the major regulator of growth and body size. We investigated the transcriptional network through which the BMP pathway regulates body size and identified cuticle collagen genes as major effectors of growth control. We demonstrate that cuticle collagens can act as positive regulators (col-41), negative regulators (col-141), or dose-sensitive regulators (rol-6) of body size. Moreover, we find a requirement of BMP signaling for stage-specific expression of cuticle collagen genes. We show that the Smad signal transducers directly bind conserved Smad-binding elements in regulatory regions of col-141 and col-142, but not of col-41 Hence, cuticle collagen genes may be directly and indirectly regulated via the BMP pathway. Our work thus connects a conserved signaling pathway with its critical downstream effectors, advancing insight into how body size is specified. Since collagen mutations and misregulation are implicated in numerous human genetic disorders and injury sequelae, understanding how collagen gene expression is regulated has broad implications.
Project description:PurposeThe purpose of this study was to assess the effects of biomimetic intrafibrillar mineralized collagen (IMC) bone scaffold materials on bone regeneration and the underlying biological mechanisms.Materials and methodsA critical-sized bone defect in the rat femur was created; then IMC, extrafibrillar mineralized collagen, and nano-hydroxyapatite bone scaffold materials were grafted into the defect. Ten weeks after implantation, micro-computed tomography and histology were applied to evaluate the bone regeneration. Furthermore, microarray technology was applied for transcriptional profile analysis at two postoperative time points (7 and 14 days). Subsequently, the critical genes involved in bone regeneration identified by transcriptional analysis were verified both in vivo through immunohistochemical analysis and in vitro by quantitative real-time transcription polymerase chain reaction evaluation.ResultsSignificantly increased new bone formation was found in the IMC group based on micro-computed tomography and histological evaluation (P<0.05). Transcriptional analysis revealed that the early process of IMC-guided bone regeneration involves the overexpression of genes mainly associated with inflammation, immune response, skeletal development, angiogenesis, neurogenesis, and the Wnt signaling pathway. The roles of the Wnt signaling pathway-related factors Wnt5a, β-catenin, and Axin2 were further confirmed both in vivo and in vitro.ConclusionThe IMC bone scaffold materials significantly enhanced bone regeneration via activation of the Wnt signaling pathway.
Project description:Alpha-defensins are released from granules of leukocytes and are implicated in inflammatory and fibrotic lung diseases. In the present study, the effects of alpha-defensins on the proliferation and collagen synthesis of lung fibroblasts were examined. We found that alpha-defensin-1 and alpha-defensin-2 induced dose-dependent increases in the incorporation of 5-bromo-2'-deoxy-uridine into newly synthesized DNA in two lines of human lung fibroblasts (HFL-1 and LL-86), suggesting that alpha-defensin-1 and alpha-defensin-2 stimulate the proliferation of lung fibroblasts. alpha-defensin-1 and alpha-defensin-2 also increased collagen-I mRNA (COL1A1) levels and protein contents of collagen-I and active/dephosphorylated beta-catenin without changes in total beta-catenin protein content in lung fibroblasts (HFL-1 and LL-86). Inhibition of the beta-catenin signaling pathway using quercetin prevented increases in cell proliferation and the protein content of collagen-I and active/dephosphorylated beta-catenin in lung fibroblasts, and in COL1A1 mRNA levels and collagen release into culture medium induced by alpha-defensin-1 and alpha-defensin-2. Knocking-down beta-catenin using small interfering RNA technology also prevented alpha-defensin-induced increases in cell proliferation and the protein content of collagen-I and active/dephosphorylated beta-catenin in lung fibroblasts, and in COL1A1 mRNA levels. Moreover, increases in the phosphorylation of glycogen synthase kinase 3beta, accumulation/activation of beta-catenin, and collagen synthesis induced by alpha-defensin-1 and alpha-defensin-2 were prevented by p38 mitogen-activated protein kinase inhibitor SB203580 and phosphoinositide 3-kinase inhibitor LY294002. These results indicate that alpha-defensin-1 and alpha-defensin-2 stimulate proliferation and collagen synthesis of lung fibroblasts. The beta-catenin signaling pathway mediates alpha-defensin-induced increases in cell proliferation and collagen synthesis of lung fibroblasts. alpha-defensin-induced activation of beta-catenin in lung fibroblasts might be caused by phosphorylation/inactivation of glycogen synthase kinase 3beta as a result of the activation of the p38 mitogen-activated protein kinase and phosphoinositide 3-kinase/Akt pathways.
Project description:Indian hedgehog (Ihh) is essential for chondrocyte differentiation and endochondral ossification and acts with parathyroid hormone-related peptide in a negative feedback loop to regulate early chondrocyte differentiation and entry to hypertrophic differentiation. Independent of this function, we and others recently reported independent Ihh functions to promote chondrocyte hypertrophy and matrix mineralization in vivo and in vitro. However, the molecular mechanisms for these actions and their functional significance are still unknown. We recently discovered that Ihh overexpression in chondrocytes stimulated the expression of late chondrocyte differentiation markers and induced matrix mineralization. Focusing on collagen type X (Col10?1) expression and transcription, we observed that hedgehog downstream transcription factors GLI-Krüppel family members (Gli) 1/2 increased COL10A1 promoter activity and identified a novel Gli1/2 response element in the 250-bp basic promoter. In addition, we found that Ihh induced Runx2 expression in chondrocytes without up-regulating other modulators of chondrocyte maturation such as Mef2c, Foxa2, and Foxa3. Runx2 promoted Col10?1 expression in cooperation with Ihh. Further analyses using promoter assays, immunofluorescence, and binding assays showed the interaction of Gli1/2 in a complex with Runx2/Smads induces chondrocyte differentiation. Finally, we could demonstrate that Ihh promotes in vitro matrix mineralization using similar molecular mechanisms. Our data provide an in vitro mechanism for Ihh signaling to positively regulate Col10?1 transcription. Thus, Ihh signaling could be an important player for not only early chondrocyte differentiation but maturation and calcification of chondrocytes.