Project description:Lipid droplets (LDs) in the nucleus of hepatocyte-derived cell lines were found to be associated with premyelocytic leukemia (PML) nuclear bodies (NBs) and type I nucleoplasmic reticulum (NR) or the extension of the inner nuclear membrane. Knockdown of PML isoform II (PML-II) caused a significant decrease in both nuclear LDs and type I NR, whereas overexpression of PML-II increased both. Notably, these effects were evident only in limited types of cells, in which a moderate number of nuclear LDs exist intrinsically, and PML-II was targeted not only at PML NBs, but also at the nuclear envelope, excluding lamins and SUN proteins. Knockdown of SUN proteins induced a significant increase in the type I NR and nuclear LDs, but these effects were cancelled by simultaneous knockdown of PML-II. Nuclear LDs harbored diacylglycerol O-acyltransferase 2 and CTP:phosphocholine cytidylyltransferase α and incorporated newly synthesized lipid esters. These results corroborated that PML-II plays a critical role in generating nuclear LDs in specific cell types.
Project description:PtdIns is a minor membrane phospholipid that is important in signal transduction. Recently, derivatives of PtdIns phosphorylated at the 3-position of the inositol ring have been implicated in the regulation of constitutive membrane traffic and in membrane fusion events. Assembly of the nuclear envelope (NE), a crucial step in the progress of mitosis, is also likely to involve membrane fusion reactions. We therefore investigated the role of PtdIns and phosphoinositide 3-kinase (PI-3K) activity in NE formation in vitro. GTP-induced NE formation was blocked by wortmannin and LY294002, two specific inhibitors of PI-3K, suggesting a role for PtdIns phosphorylated at the 3-position. PtdIns-specific phospholipase C mimicked GTP hydrolysis as an inducer of NE formation. This induction was dependent on a membrane vesicle subfraction (MV1) that was highly enriched in PtdIns, as determined by heteronuclear two-dimensional NMR spectroscopy. On the basis of these results, we suggest that the MV1 population serves as a source of membranes rich in PtdIns that might facilitate fusion, possibly through the production of the membrane-destabilizing lipid diacylglycerol.
Project description:Purified recombinant FUsed in Sarcoma (FUS) assembles into an oligomeric state in an RNA-dependent manner to form large condensates. FUS condensates bind and concentrate the C-terminal domain of RNA polymerase II (RNA Pol II). We asked whether a granule in cells contained FUS and RNA Pol II as suggested by the binding of FUS condensates to the polymerase. We developed cross-linking protocols to recover protein particles containing FUS from cells and separated them by size exclusion chromatography. We found a significant fraction of RNA Pol II in large granules containing FUS with diameters of >50 nm or twice that of the RNA Pol II holoenzyme. Inhibition of transcription prevented the polymerase from associating with the granules. Altogether, we found physical evidence of granules containing FUS and RNA Pol II in cells that possess properties comparable to those of in vitro FUS condensates.
Project description:BackgroundDiet and obesity are recognized in the scientific literature as important risk factors for cancer development and progression. Hypercholesterolemia facilitates lymphoma lymphoblastic cell growth and in time turns in hypocholesterolemia that is a sign of tumour progression. The present study examined how and where the cholesterol acts in cancer cells when you reproduce in vitro an in vivo hypercholesterolemia condition.MethodsWe used non-Hodgkin's T cell human lymphoblastic lymphoma (SUP-T1 cell line) and we studied cell morphology, aggressiveness, gene expression for antioxidant proteins, polynucleotide kinase/phosphatase and actin, cholesterol and sphingomyelin content and finally sphingomyelinase activity in whole cells, nuclei and nuclear lipid microdomains.ResultsWe found that cholesterol changes cancer cell morphology with the appearance of protrusions together to the down expression of β-actin gene and reduction of β-actin protein. The lipid influences SUP-T1 cell aggressiveness since stimulates DNA and RNA synthesis for cell proliferation and increases raf1 and E-cadherin, molecules involved in invasion and migration of cancer cells. Cholesterol does not change GRX2 expression but it overexpresses SOD1, SOD2, CCS, PRDX1, GSR, GSS, CAT and PNKP. We suggest that cholesterol reaches the nucleus and increases the nuclear lipid microdomains known to act as platform for chromatin anchoring and gene expression.ConclusionThe results imply that, in hypercholesterolemia conditions, cholesterol reaches the nuclear lipid microdomains where activates gene expression coding for antioxidant proteins. We propose the cholesterolemia as useful parameter to monitor in patients with cancer.
Project description:The antibiotic peptide nisin is the first known lantibiotic that uses a docking molecule within the bacterial cytoplasmic membrane for pore formation. Through specific interaction with the cell wall precursor lipid II, nisin forms defined pores which are stable for seconds and have pore diameters of 2 to 2.5 nm.
Project description:De novo formation of the double-membrane compartment autophagosome is seeded by small vesicles carrying membrane protein autophagy-related 9 (ATG9), the function of which remains unknown. Here we find that ATG9A scrambles phospholipids of membranes in vitro. Cryo-EM structures of human ATG9A reveal a trimer with a solvated central pore, which is connected laterally to the cytosol through the cavity within each protomer. Similarities to ABC exporters suggest that ATG9A could be a transporter that uses the central pore to function. Moreover, molecular dynamics simulation suggests that the central pore opens laterally to accommodate lipid headgroups, thereby enabling lipids to flip. Mutations in the pore reduce scrambling activity and yield markedly smaller autophagosomes, indicating that lipid scrambling by ATG9A is essential for membrane expansion. We propose ATG9A acts as a membrane-embedded funnel to facilitate lipid flipping and to redistribute lipids added to the outer leaflet of ATG9 vesicles, thereby enabling growth into autophagosomes.
Project description:The asymmetric distribution of phospholipids in membranes is a fundamental principle of cellular compartmentalization and organization. Phosphatidylethanolamine (PE), a nonbilayer phospholipid that contributes to organelle shape and function, is synthesized at several subcellular localizations via semiredundant pathways. Previously, we demonstrated in budding yeast that the PE synthase Psd1, which primarily operates on the mitochondrial inner membrane, is additionally targeted to the ER. While ER-localized Psd1 is required to support cellular growth in the absence of redundant pathways, its physiological function is unclear. We now demonstrate that ER-localized Psd1 sublocalizes on the ER to lipid droplet (LD) attachment sites and show it is specifically required for normal LD formation. We also find that the role of phosphatidylserine decarboxylase (PSD) enzymes in LD formation is conserved in other organisms. Thus we have identified PSD enzymes as novel regulators of LDs and demonstrate that both mitochondria and LDs in yeast are organized and shaped by the spatial positioning of a single PE synthesis enzyme.
Project description:To change conformation, a protein must deform the surrounding bilayer. In this work, a three-dimensional continuum elastic model for gramicidin A in a lipid bilayer is shown to describe the sensitivity to thickness, curvature stress, and the mechanical properties of the lipid bilayer. A method is demonstrated to extract the gramicidin-lipid boundary condition from all-atom simulations that can be used in the three-dimensional continuum model. The boundary condition affects the deformation dramatically, potentially much more than typical variations in the material stiffness do as lipid composition is changed. Moreover, it directly controls the sensitivity to curvature stress. The curvature stress and hydrophobic surfaces of the all-atom and continuum models are found to be in excellent agreement. The continuum model is applied to estimate the enrichment of hydrophobically matched lipids near the channel in a mixture, and the results agree with single-channel experiments and extended molecular dynamics simulations from the companion article by Beaven et al. in this issue of Biophysical Journal.
Project description:Using phase-separated droplet interface bilayers, we observe membrane binding and pore formation of a eukaryotic cytolysin, Equinatoxin II (EqtII). EqtII activity is known to depend on the presence of sphingomyelin in the target membrane and is enhanced by lipid phase separation. By imaging the ionic flux through individual pores in vitro, we observe that EqtII pores form predominantly within the liquid-disordered phase. We observe preferential binding of labeled EqtII at liquid-ordered/liquid-disordered domain boundaries before it accumulates in the liquid-disordered phase.
Project description:Nisin and related lantibiotics kill bacteria by pore formation or by sequestering lipid II. Some lantibiotics sequester lipid II into clusters, which were suggested to kill cells through delocalized peptidoglycan synthesis. Here, we show that cluster formation is always concomitant with (i) membrane pore formation and (ii) membrane depolarization. Nisin variants that cluster lipid II kill L-form bacteria with similar efficiency, suggesting that delocalization of peptidoglycan synthesis is not the primary killing mechanism of these lantibiotics.