ABSTRACT:
Faratian2009 - Role of PTEN in Trastuzumab
resistance
This model is described in the article:
Systems biology
reveals new strategies for personalizing cancer medicine and
confirms the role of PTEN in resistance to trastuzumab.
Faratian D, Goltsov A, Lebedeva G,
Sorokin A, Moodie S, Mullen P, Kay C, Um IH, Langdon S, Goryanin
I, Harrison DJ.
Cancer Res. 2009 Aug; 69(16):
6713-6720
Abstract:
Resistance to targeted cancer therapies such as trastuzumab
is a frequent clinical problem not solely because of
insufficient expression of HER2 receptor but also because of
the overriding activation states of cell signaling pathways.
Systems biology approaches lend themselves to rapid in silico
testing of factors, which may confer resistance to targeted
therapies. Inthis study, we aimed to develop a new kinetic
model that could be interrogated to predict resistance to
receptor tyrosine kinase (RTK) inhibitor therapies and directly
test predictions in vitro and in clinical samples. The new
mathematical model included RTK inhibitor antibody binding,
HER2/HER3 dimerization and inhibition, AKT/mitogen-activated
protein kinase cross-talk, and the regulatory properties of
PTEN. The model was parameterized using quantitative
phosphoprotein expression data from cancer cell lines using
reverse-phase protein microarrays. Quantitative PTEN protein
expression was found to be the key determinant of resistance to
anti-HER2 therapy in silico, which was predictive of unseen
experiments in vitro using the PTEN inhibitor bp(V). When
measured in cancer cell lines, PTEN expression predicts
sensitivity to anti-HER2 therapy; furthermore, this
quantitative measurement is more predictive of response
(relative risk, 3.0; 95% confidence interval, 1.6-5.5; P <
0.0001) than other pathway components taken in isolation and
when tested by multivariate analysis in a cohort of 122 breast
cancers treated with trastuzumab. For the first time, a systems
biology approach has successfully been used to stratify
patients for personalized therapy in cancer and is further
compelling evidence that PTEN, appropriately measured in the
clinical setting, refines clinical decision making in patients
treated with anti-HER2 therapies.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000424.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.