Begitt2014 - STAT1 cooperative DNA binding - double GAS polymer model
Ontology highlight
ABSTRACT:
Begitt2014 - STAT1 cooperative DNA binding - double GAS polymer model
The importance of STAT1-cooperative DNA binding in type 1 and type 2 interferon signalling has been studies using experimental and modelling approaches. The authors have developed two ODE models to describe STAT1 binding to short promoter regions of DNA, namely "single GAS polymer model" and "double GAS polymer model" considering binding to single or double GAS sites, respectively. The length of DNA in the single GAS model was three sites and four sites in double GAS model. This model correspond to the "double GAS polymer model".
This model is described in the article:
STAT1-cooperative DNA binding distinguishes type 1 from type 2 interferon signaling.
Begitt A, Droescher M, Meyer T, Schmid CD, Baker M, Antunes F, Owen MR, Naumann R, Decker T, Vinkemeier U
Nat Immunol. 2014 Feb;15(2):168-76.
Abstract:
STAT1 is an indispensable component of a heterotrimer (ISGF3) and a STAT1 homodimer (GAF) that function as transcription regulators in type 1 and type 2 interferon signaling, respectively. To investigate the importance of STAT1-cooperative DNA binding, we generated gene-targeted mice expressing cooperativity-deficient STAT1 with alanine substituted for Phe77. Neither ISGF3 nor GAF bound DNA cooperatively in the STAT1F77A mouse strain, but type 1 and type 2 interferon responses were affected differently. Type 2 interferon-mediated transcription and antibacterial immunity essentially disappeared owing to defective promoter recruitment of GAF. In contrast, STAT1 recruitment to ISGF3 binding sites and type 1 interferon-dependent responses, including antiviral protection, remained intact. We conclude that STAT1 cooperativity is essential for its biological activity and underlies the cellular responses to type 2, but not type 1 interferon.
This model is hosted on BioModels Database
and identified
by: BIOMD0000000501
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.
SUBMITTER: Michelle Baker
PROVIDER: BIOMD0000000501 | BioModels | 2024-09-02
REPOSITORIES: BioModels
ACCESS DATA