ABSTRACT:
DallePazze2014 - Cellular senescene-induced
mitochondrial dysfunction
This model is described in the article:
Dynamic modelling of
pathways to cellular senescence reveals strategies for targeted
interventions.
Dalle Pezze P, Nelson G, Otten EG,
Korolchuk VI, Kirkwood TB, von Zglinicki T, Shanley DP.
PLoS Comput. Biol. 2014 Aug; 10(8):
e1003728
Abstract:
Cellular senescence, a state of irreversible cell cycle
arrest, is thought to help protect an organism from cancer, yet
also contributes to ageing. The changes which occur in
senescence are controlled by networks of multiple signalling
and feedback pathways at the cellular level, and the interplay
between these is difficult to predict and understand. To
unravel the intrinsic challenges of understanding such a highly
networked system, we have taken a systems biology approach to
cellular senescence. We report a detailed analysis of
senescence signalling via DNA damage, insulin-TOR, FoxO3a
transcription factors, oxidative stress response, mitochondrial
regulation and mitophagy. We show in silico and in vitro that
inhibition of reactive oxygen species can prevent loss of
mitochondrial membrane potential, whilst inhibition of mTOR
shows a partial rescue of mitochondrial mass changes during
establishment of senescence. Dual inhibition of ROS and mTOR in
vitro confirmed computational model predictions that it was
possible to further reduce senescence-induced mitochondrial
dysfunction and DNA double-strand breaks. However, these
interventions were unable to abrogate the senescence-induced
mitochondrial dysfunction completely, and we identified
decreased mitochondrial fission as the potential driving force
for increased mitochondrial mass via prevention of mitophagy.
Dynamic sensitivity analysis of the model showed the network
stabilised at a new late state of cellular senescence. This was
characterised by poor network sensitivity, high signalling
noise, low cellular energy, high inflammation and permanent
cell cycle arrest suggesting an unsatisfactory outcome for
treatments aiming to delay or reverse cellular senescence at
late time points. Combinatorial targeted interventions are
therefore possible for intervening in the cellular pathway to
senescence, but in the cases identified here, are only capable
of delaying senescence onset.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000582.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.