Project description:This SuperSeries is composed of the following subset Series: GSE4093: Resveratrol treatment of daf-16 mutant C. elegans GSE4094: N2 worms treated with Resveratrol GSE4095: Sir-2.1 low copy transgenic Abstract: C. elegans SIR-2.1, a member of the Sir-2 family of NAD(+)-dependent protein deacetylases, has been shown to regulate nematode aging via the insulin/IGF pathway transcription factor daf-16. Treatment of C. elegans with the small molecule resveratrol, however, extends life span in a manner fully dependent upon sir-2.1, but independent of daf-16. Microarray analysis of worms treated with resveratrol demonstrates the transcriptional induction of a family of genes encoding prion-like glutamine/asparagine-rich proteins involved in endoplasmic reticulum (ER) stress response to unfolded proteins. RNA interference of abu-11, a member of this ER stress gene family, abolishes resveratrol-mediated life span extension, and overexpression of abu-11 extends the life span of transgenic animals. Furthermore, SIR-2.1 normally represses transcription of abu-11 and other ER stress gene family members, indicating that resveratrol extends life span by inhibiting sir-2.1-mediated repression of ER stress genes. Our findings demonstrate that abu-11 and other members of its ER stress gene family are positive determinants of C. elegans life span. Refer to individual Series
Project description:Abstract: C. elegans SIR-2.1, a member of the Sir-2 family of NAD(+)-dependent protein deacetylases, has been shown to regulate nematode aging via the insulin/IGF pathway transcription factor daf-16. Treatment of C. elegans with the small molecule resveratrol, however, extends life span in a manner fully dependent upon sir-2.1, but independent of daf-16. Microarray analysis of worms treated with resveratrol demonstrates the transcriptional induction of a family of genes encoding prion-like glutamine/asparagine-rich proteins involved in endoplasmic reticulum (ER) stress response to unfolded proteins. RNA interference of abu-11, a member of this ER stress gene family, abolishes resveratrol-mediated life span extension, and overexpression of abu-11 extends the life span of transgenic animals. Furthermore, SIR-2.1 normally represses transcription of abu-11 and other ER stress gene family members, indicating that resveratrol extends life span by inhibiting sir-2.1-mediated repression of ER stress genes. Our findings demonstrate that abu-11 and other members of its ER stress gene family are positive determinants of C. elegans life span. This SuperSeries is composed of the SubSeries listed below.
Project description:The formation of heterochromatin at HML, HMR, and telomeres in Saccharomyces cerevisiae involves two main steps: Recruitment of Sir proteins to silencers and their spread throughout the silenced domain. For the following datasets, we created a fusion protein between the heterochromatin protein Sir3 and the non-site-specific bacterial adenine methyltransferase M.EcoGII, with or without a 3xV5 epitope at the C-terminus. We performed ChIP-seq experiments (immunoprecipitated Sir3-M.EcoGII-3xV5) and MeDIP-seq experiments (immunoprecipitated m6A methylated DNA). We also used a temperature-sensitive allele of SIR3 (sir3-8) fused to M.ECOGII to induce m6A methylation for MeDIP-seq.
Project description:The formation of heterochromatin at HML, HMR, and telomeres in Saccharomyces cerevisiae involves two main steps: Recruitment of Sir proteins to silencers and their spread throughout the silenced domain. For the following datasets, we created a fusion protein between the heterochromatin protein Sir3 and the non-site-specific bacterial adenine methyltransferase M.EcoGII. We mapped sites of Sir3-chromatin interactions genome-wide using long-read Nanopore sequencing to detect adenines methylated by the fusion protein. We also used a temperature-sensitive allele of SIR3 (sir3-8) fused to M.ECOGII to induce m6A methylation over time. Time courses involved a switch from restrictive temperature (37°C) to permissive temperature (25°C).
Project description:In this study we aimed to analyze the biological mechanisms underlying apparently different modes of peritoneal tumor spread in serous ovarian cancer: miliary (widespread, millet-like lesions) versus non-miliary (bigger, exophytically growing implants). Tumor tissues and ascites from 23 chemotherapy naive patients were analyzed by RNA-sequencing and flow cytometry. On the basis of differential gene expression between miliary and non-miliary, gene signatures were developed. A calculated tumor spread factor revealed a significant independent negative impact of miliary spread on overall survival (HR 3.77; CI95 1.14–12.39; p = 0.029) in an independent cohort of 165 serous ovarian cancer patients. Comparing previously published epithelial-mesenchymal transition (EMT) gene signatures, non-miliary spread correlated significantly with a reduced epithelial status. We conclude that serous ovarian cancer is a heterogeneous disease with distinct modes of peritoneal tumor spread, differing not only in clinical appearance, but also in molecular characteristics and outcome. EMT, peritoneal inflammation status, and therapeutic options are discussed. Significance: More than half of serous epithelial ovarian cancer patients present with a newly described type of intraperitoneal tumor spread, associated with differences in the inflammation status, activated oncogenic pathways, lack of EMT, and thus reduced overall survival. Both, the diminished immune reaction and the enhanced epithelial and malignant characteristics of the tumor cells open new avenues for therapeutic options and strategies, like Catumaxomab, already in clinical use.
Project description:The tempo-spatial patterns of Covid-19 infections are a result of nested personal, societal, and political decisions that involve complicated epidemiological dynamics across overlapping spatial scales. High infection "hotspots" interspersed within regions where infections remained sporadic were ubiquitous early in the outbreak, but the spatial signature of the infection evolved to affect most regions equally, albeit with distinct temporal patterns. The sparseness of Covid-19 infections in the United States was analyzed at scales spanning from 10 to 2,600 km (county to continental scale). Spatial evolution of Covid-19 cases in the United States followed multifractal scaling. A rapid increase in the spatial correlation was identified early in the outbreak (March to April). Then, the increase continued at a slower rate and approached the spatial correlation of human population. Instead of adopting agent-based models that require tracking of individuals, a kernel-modulated approach is developed to characterize the dynamic spreading of disease in a multifractal distributed susceptible population. Multiphase Covid-19 epidemics were reasonably reproduced by the proposed kernel-modulated susceptible-infectious-recovered (SIR) model. The work explained the fact that while the reproduction number was reduced due to nonpharmaceutical interventions (e.g., masks, social distancing, etc.), subsequent multiple epidemic waves still occurred; this was due to an increase in susceptible population flow following a relaxation of travel restrictions and corollary stay-at-home orders. This study provides an original interpretation of Covid-19 spread together with a pragmatic approach that can be imminently used to capture the spatial intermittency at all epidemiologically relevant scales while preserving the "disordered" spatial pattern of infectious cases.
Project description:Candida albicans repetitive elements display epigenetic diversity and plasticity. This experiment inspects RNA levels on both wild- type (BWP17 strain) and sir double deletion mutant strain in order to detect changes in gene expression associated with SIR2-dependent heterochromatin patterns.
Project description:MicroRNAs (miRNAs) are crucial post-transcriptional regulators of gene expression in species ranging from plants to mammals. Unraveling the complex networks of miRNA-mediated regulation of gene expression requires the ability to identify the mRNA targets of individual miRNAs in native cellular contexts. Here we describe RIP-SIR, an unbiased genome-wide method for identifying interactions between endogenous miRNAs and their targets in almost any tissue or cell type.