Karlstaedt2012 - CardioNet, A Human Metabolic Network
Ontology highlight
ABSTRACT:
Karlstaedt2012 - CardioNet, A Human Metabolic Network
CardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes.
This model is described in the article:
CardioNet: A human metabolic network suited for the study of cardiomyocyte metabolism.
Karlstaedt A, Fliegner D, Kararigas G, Ruderisch HS, Regitz-Zagrosek V, Holzhütter HG.
BMC Syst Biol. 2012 Aug 29;6(1):114.
Abstract:
BACKGROUND: Availability of oxygen and nutrients in the coronary circulation is a crucial determinant of cardiac performance. Nutrient composition of coronary blood may significantly vary in specific physiological and pathological conditions, for example, administration of special diets, long-term starvation, physical exercise or diabetes. Quantitative analysis of cardiac metabolism from a systems biology perspective may help to a better understanding of the relationship between nutrient supply and efficiency of metabolic processes required for an adequate cardiac output.
RESULTS:
Here we present CardioNet, the first large-scale reconstruction of the metabolic network of the human cardiomyocyte comprising 1793 metabolic reactions, including 560 transport processes in six compartments. We use flux-balance analysis to demonstrate the capability of the network to accomplish a set of 368 metabolic functions required for maintaining the structural and functional integrity of the cell. Taking the maintenance of ATP, biosynthesis of ceramide, cardiolipin and further important phospholipids as examples, we analyse how a changed supply of glucose, lactate, fatty acids and ketone bodies may influence the efficiency of these essential processes.
CONCLUSIONS:
CardioNet is a functionally validated metabolic network of the human cardiomyocyte that enables theorectical studies of cellular metabolic processes crucial for the accomplishment of an adequate cardiac output.
This model is hosted on BioModels Database
and identified by: MODEL1212040000
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. PMID: 20587024
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.
SUBMITTER: Anja Karlstaedt
PROVIDER: MODEL1212040000 | BioModels | 2005-01-01
REPOSITORIES: BioModels
ACCESS DATA