Alam2010 - Genome-scale metabolic network of Streptomyces coelicolor
Ontology highlight
ABSTRACT:
Alam2010 - Genome-scale metabolic network of
Streptomyces coelicolor
This model is described in the article:
Metabolic modeling and
analysis of the metabolic switch in Streptomyces
coelicolor.
Alam MT, Merlo ME, STREAM
Consortium, Hodgson DA, Wellington EM, Takano E, Breitling
R.
BMC Genomics 2010; 11: 202
Abstract:
BACKGROUND: The transition from exponential to stationary
phase in Streptomyces coelicolor is accompanied by a major
metabolic switch and results in a strong activation of
secondary metabolism. Here we have explored the underlying
reorganization of the metabolome by combining computational
predictions based on constraint-based modeling and detailed
transcriptomics time course observations. RESULTS: We
reconstructed the stoichiometric matrix of S. coelicolor,
including the major antibiotic biosynthesis pathways, and
performed flux balance analysis to predict flux changes that
occur when the cell switches from biomass to antibiotic
production. We defined the model input based on observed
fermenter culture data and used a dynamically varying objective
function to represent the metabolic switch. The predicted
fluxes of many genes show highly significant correlation to the
time series of the corresponding gene expression data.
Individual mispredictions identify novel links between
antibiotic production and primary metabolism. CONCLUSION: Our
results show the usefulness of constraint-based modeling for
providing a detailed interpretation of time course gene
expression data.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180005.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
SUBMITTER: Nicolas Le Novère
PROVIDER: MODEL1507180005 | BioModels | 2015-07-30
REPOSITORIES: BioModels
ACCESS DATA