AbuOun2009 - Genome-scale metabolic network of Salmonella typhimurium (iMA945)
Ontology highlight
ABSTRACT:
AbuOun2009 - Genome-scale metabolic network
of Salmonella typhimurium (iMA945)
This model is described in the article:
Genome scale reconstruction
of a Salmonella metabolic model: comparison of similarity and
differences with a commensal Escherichia coli strain.
AbuOun M, Suthers PF, Jones GI,
Carter BR, Saunders MP, Maranas CD, Woodward MJ, Anjum MF.
J. Biol. Chem. 2009 Oct; 284(43):
29480-29488
Abstract:
Salmonella are closely related to commensal Escherichia coli
but have gained virulence factors enabling them to behave as
enteric pathogens. Less well studied are the similarities and
differences that exist between the metabolic properties of
these organisms that may contribute toward niche adaptation of
Salmonella pathogens. To address this, we have constructed a
genome scale Salmonella metabolic model (iMA945). The model
comprises 945 open reading frames or genes, 1964 reactions, and
1036 metabolites. There was significant overlap with genes
present in E. coli MG1655 model iAF1260. In silico growth
predictions were simulated using the model on different carbon,
nitrogen, phosphorous, and sulfur sources. These were compared
with substrate utilization data gathered from high throughput
phenotyping microarrays revealing good agreement. Of the
compounds tested, the majority were utilizable by both
Salmonella and E. coli. Nevertheless a number of differences
were identified both between Salmonella and E. coli and also
within the Salmonella strains included. These differences
provide valuable insight into differences between a commensal
and a closely related pathogen and within different pathogenic
strains opening new avenues for future explorations.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180009.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
SUBMITTER: Nicolas Le Novère
PROVIDER: MODEL1507180009 | BioModels | 2015-07-30
REPOSITORIES: BioModels
ACCESS DATA