Models

Dataset Information

0

Stephanou2019 - pH as a potential therapeutic target to improve temozolomide antitumor efficacy


ABSTRACT: Abstract: Despite intensive treatments including temozolomide (TMZ) administration, glioblastoma patient prognosis remains dismal and innovative therapeutic strategies are urgently needed. A systems pharmacology approach was undertaken to investigate TMZ pharmacokinetics‐pharmacodynamics (PK‐PD) incorporating the effect of local pH, tumor spatial configuration and micro‐environment. A hybrid mathematical framework was designed coupling ordinary differential equations describing the intracellular reactions, with a spatial cellular automaton to individualize the cells. A differential drug impact on tumor and healthy cells at constant extracellular pH was computationally demonstrated as TMZ‐induced DNA damage was larger in tumor cells as compared to normal cells due to less acidic intracellular pH in cancer cells. Optimality of TMZ efficacy defined as maximum difference between damage in tumor and healthy cells was reached for extracellular pH between 6.8 and 7.5. Next, TMZ PK‐PD in a solid tumor was demonstrated to highly depend on its spatial configuration as spread cancer cells or fragmented tumors presented higher TMZ‐induced damage as compared to compact tumor spheroid. Simulations highlighted that smaller tumors were less acidic than bigger ones allowing for faster TMZ activation and their closer distance to blood capillaries allowed for better drug penetration. For model parameters corresponding to U87 glioma cells, inter‐cell variability in TMZ uptake play no role regarding the mean drug‐induced damage in the whole cell population whereas this quantity was increased by inter‐cell variability in TMZ efflux which was thus a disadvantage in terms of drug resistance. Overall, this study revealed pH as a new potential target to significantly improve TMZ antitumor efficacy. Change the value of pH for different cases.

SUBMITTER: Szeyi Ng  

PROVIDER: MODEL1909300003 | BioModels | 2019-09-30

REPOSITORIES: BioModels

altmetric image

Publications

pH as a potential therapeutic target to improve temozolomide antitumor efficacy : A mechanistic modeling study.

Stéphanou Angélique A   Ballesta Annabelle A  

Pharmacology research & perspectives 20190128 1


Despite intensive treatments including temozolomide (TMZ) administration, glioblastoma patient prognosis remains dismal and innovative therapeutic strategies are urgently needed. A systems pharmacology approach was undertaken to investigate TMZ pharmacokinetics-pharmacodynamics (PK-PD) incorporating the effect of local pH, tumor spatial configuration and micro-environment. A hybrid mathematical framework was designed coupling ordinary differential equations describing the intracellular reactions  ...[more]

Similar Datasets

2024-02-16 | GSE246091 | GEO
2017-01-25 | GSE93980 | GEO
2017-01-25 | GSE93988 | GEO
2017-01-25 | GSE93982 | GEO
2013-07-29 | E-GEOD-49301 | biostudies-arrayexpress
2023-08-14 | GSE239784 | GEO
2019-05-23 | GSE118508 | GEO
2022-12-02 | GSE213440 | GEO
2022-12-02 | GSE213439 | GEO
2015-12-30 | GSE67101 | GEO