Sivery2016 - A mammalian heat shock response model
Ontology highlight
ABSTRACT: Environmental stress, such as oxidative or heat stress, induces the activation of the heat shock response
(HSR) and leads to an increase in the heat shock proteins (HSPs) level. These HSPs act as molecular
chaperones to maintain cellular proteostasis. Controlled by highly intricate regulatory mechanisms,
having stress-induced activation and feedback regulations with multiple partners, the HSR is still
incompletely understood. In this context, we propose a minimal molecular model for the gene
regulatory network of the HSR that reproduces quantitatively different heat shock experiments both
on heat shock factor 1 (HSF1) and HSPs activities. This model, which is based on chemical kinetics
laws, is kept with a low dimensionality without altering the biological interpretation of the model
dynamics. This simplistic model highlights the titration of HSF1 by chaperones as the guiding line of
the network. Moreover, by a steady states analysis of the network, three different temperature stress
regimes appear: normal, acute, and chronic, where normal stress corresponds to pseudo thermal
adaption. The protein triage that governs the fate of damaged proteins or the different stress regimes
are consequences of the titration mechanism. The simplicity of the present model is of interest in
order to study detailed modelling of cross regulation between the HSR and other major genetic
networks like the cell cycle or the circadian clock.
Sivéry, A., Courtade, E., Thommen, Q. (2016). A minimal titration model of the mammalian dynamical heat shock response. Physical biology, 13(6), 066008.
SUBMITTER: Quentin Thommen
PROVIDER: MODEL2201210001 | BioModels | 2022-01-25
REPOSITORIES: BioModels
ACCESS DATA