ABSTRACT:
This a model from the article:
Alternans and spiral breakup in a human ventricular tissue model.
ten Tusscher KH, Panfilov AV. Am J Physiol Heart Circ Physiol.
(2006) 291(3); H1088-100 16565318
,
Abstract:
Ventricular fibrillation (VF) is one of the main causes of death in the Western world. According to one hypothesis, the chaotic excitation dynamics during VF are the result of dynamical instabilities in action potential duration (APD) the occurrence of which requires that the slope of the APD restitution curve exceeds 1. Other factors such as electrotonic coupling and cardiac memory also determine whether these instabilities can develop. In this paper we study the conditions for alternans and spiral breakup in human cardiac tissue. Therefore, we develop a new version of our human ventricular cell model, which is based on recent experimental measurements of human APD restitution and includes a more extensive description of intracellular calcium dynamics. We apply this model to study the conditions for electrical instability in single cells, for reentrant waves in a ring of cells, and for reentry in two-dimensional sheets of ventricular tissue. We show that an important determinant for the onset of instability is the recovery dynamics of the fast sodium current. Slower sodium current recovery leads to longer periods of spiral wave rotation and more gradual conduction velocity restitution, both of which suppress restitution-mediated instability. As a result, maximum restitution slopes considerably exceeding 1 (up to 1.5) may be necessary for electrical instability to occur. Although slopes necessary for the onset of instabilities found in our study exceed 1, they are within the range of experimentally measured slopes. Therefore, we conclude that steep APD restitution-mediated instability is a potential mechanism for VF in the human heart.
This model was taken from the CellML repository
and automatically converted to SBML.
The original model was:
tentusscher, panfilov, 2006, version04
The original CellML model was created by:
Noble, Penny, J
penny.noble(at)dpag.ox.ac.uk
The University of Oxford
Department of Physiology, Anatomy and Genetics
This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication
for more information.
In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not..
To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.