Transcription profiling of mouse adult neural stem cells exogenously expressing Oct4 produces one-factor induced pluripotent stem (1F iPS)
Ontology highlight
ABSTRACT: Pluripotency can be induced in murine and human fibroblast by transduction of four transcription factors (Oct4, Sox2, Klf4 and c-Myc). Previously we reported that two factors (Oct4 and Klf4) are sufficient for reprogramming adult mouse neural stem cells (NSCs) to a pluripotent state. However, although NSCs endogenously express the factors Sox2, c-Myc, and Klf4, our previous report does not elucidate why exogenous expression of either Klf4 or c-Myc is still required for reprogramming. Here we report that exogenous expression of Oct4 is sufficient to generate one-factor induced pluripotent stem (1F iPS) cells without any oncogenic factors, such as c-Myc and Klf4, from mouse adult NSCs, which endogenously express Sox2, c-Myc, and Klf4, and also intermediate reprogramming markers alkaline phosphatase (AP), stage-specific embryonic antigen-1 (SSEA-1). These results extend our previous report proposing that somatic cells can be reprogrammed to a pluripotent state with a reducing number of reprogramming factors when the complementing factors are endogenously expressed in the somatic cells. Experiment Overall Design: 10 hybridizations in total. Experiment Overall Design: NSC-derived iPS cells by one-factor (Oct4) in triplicate: Experiment Overall Design: - NSC_1F_iPS_1 Experiment Overall Design: - NSC_1F_iPS_2 Experiment Overall Design: - NSC_1F_iPS_3 Experiment Overall Design: One-factor (Oct4) iPS cell-derived NSC in triplicate: Experiment Overall Design: - 1F_iPS_NSC_1 Experiment Overall Design: - 1F_iPS_NSC_2 Experiment Overall Design: - 1F_iPS_NSC_3 Experiment Overall Design: Neural stem cell (NSC) derived from brain of OG2/Rosa26 mice: Experiment Overall Design: - NSC_1 Experiment Overall Design: - NSC_2 Experiment Overall Design: - NSC_3 Experiment Overall Design: - NSC_4
ORGANISM(S): Mus musculus
SUBMITTER: Martin Zenke
PROVIDER: E-GEOD-12499 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA