Transcription profiling Saccharomyces cerevisiae xylose metabolism
Ontology highlight
ABSTRACT: In the present study transcriptome and proteome of recombinant, xylose-utilising S. cerevisiae grown in aerobic batch cultures on xylose were compared with glucose-grown cells both in glucose repressed and derepressed states. The aim was to study at genome-wide level how signalling and carbon catabolite repression differed in cells grown on either glucose or xylose. The more detailed knowledge about is xylose sensed as a fermentable carbon source, capable of catabolite repression like glucose, or is it rather recognised as a non-fermentable carbon source is important in achieving understanding for further engineering this yeast for more efficient anaerobic fermentation of xylose. Experiment Overall Design: Three aerobic batch fermentations were carried out both on 50 g l-1 glucose and on 50 g l-1 xylose to compare the yeast transcriptome and proteome of cells growing on xylose with that of glucose repressed and glucose derepressed cells. Samples of the xylose-grown cells were harvested at 72 h from the start of the xylose cultures with 32 g l-1 of residual xylose present. Samples of the glucose repressed cells were harvested at 5 h from the start of the glucose cultures with 37 g l-1 of residual glucose present. Samples of the glucose derepressed cells were harvested at 24 h from the start of the glucose cultures containing no glucose but 13 g l-1 of accumulated ethanol.
ORGANISM(S): Saccharomyces cerevisiae
SUBMITTER: Laura Salusjärvi
PROVIDER: E-GEOD-12890 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA