Gene Expression in Castration-Resistant C4-2 Cells after AR Knockdown
Ontology highlight
ABSTRACT: Prostate cancer is the most common, lethal malignancy in men. Although androgen withdrawal therapies are used to treat advanced disease, progression to a castration-resistant, end-stage is the usual outcome. In this study, the tested hypothesis was that the androgen receptor remains essential for the growth and viability of castration-resistant disease. Knocking down the androgen receptor in well-established tumors grown in castrated mice caused growth arrest, decreased serum PSA, and frequently regression and total eradication of tumors. Growth control of castration-resistant tumors appeared to be linked to the extent of androgen receptor knockdown, which triggers upregulation of many genes involved in apoptosis, cell cycle arrest, and inhibition of tumorigenesis and protein synthesis. Our findings provide proof of principle that in vivo knockdown of the androgen receptor is a viable therapeutic strategy to control and possibly eradicate prostate cancers that have progressed to the lethal castration-resistant state. C4-2 human prostate cancer cells stably expressing a tetracycline-inducible AR-targeted short hairpin RNA (shRNA) or scrambled shRNA were generated. These two cell lines were incubated in the absence of androgens with or without doxycycline hyclase (DOX). Comparison analysis of the gene expression profiles of C4-2 cells stably expressing AR shRNA + DOX and control cells (AR shRNA - DOX and scrambled shRNA ± DOX) was conducted to identify differentially regulated genes due to AR knockdown after normalization and data filtering. Genes were considered to be significantly different if the expression in the induced AR shRNA + DOX cells was at least 1.7-fold greater or 1.7-fold less than that seen in the control cells, with P< 0.05.
ORGANISM(S): Homo sapiens
SUBMITTER: Helen Cheng
PROVIDER: E-GEOD-13332 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA