Disruption of PPARg signaling results in mouse prostatic intraepithelial neoplasia (mPIN) involving active autophagy
Ontology highlight
ABSTRACT: Peroxisome proliferator-activated receptor-gamma (PPARg) regulates the interface between cellular lipid metabolism, redox status and organelle differentiation. Following conditional prostatic epithelial knockout of PPARg in mice we observed focal hyperplasia of the epithelium which developed to mouse prostatic intraepithelial neoplasia (mPIN), becoming progressively more severe with time. We selectively knocked down PPARg2 isoform in wild-type mouse prostatic epithelial cells and examined the consequences of this in a tissue recombination model. Histopathologically the results resembled the conditional PPARg KO mouse prostates. Electron microscopy showed accumulated defective lysosomes and autophagic vacuoles in both of PPARg- and g2- deficient cells. Gene expression profiling indicated a major dysregulation of cell cycle control and metabolic signaling networks related to peroxisomal and lysosomal maturation, lipid oxidation and degradation. We conclude that PPARg maintains the maturation and turnover of peroxisomes and lysosomes in prostate epithelium. Disruption of PPARg signaling results in autophagy and oxidative stress during mPIN pathogenesis. The mPrE-PPARg knockout and mPrE-PPARg2 shRNA cells were compared to wildtype mPrE cells. Time (3 days culture) and cell types (x 4) were tested.
ORGANISM(S): Mus musculus
SUBMITTER: Pradip Roy-Burman
PROVIDER: E-GEOD-13867 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA