Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Functional genomic analysis of frataxin deficiency, Agilent data


ABSTRACT: Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARγ pathway as a therapeutic target in Friedreich's ataxia Friedreich's ataxia (FRDA), the most common inherited ataxia, is characterized by focal neurodegeneration, diabetes mellitus, and life-threatening cardiomyopathy. Frataxin, which is significantly reduced in patients with this recessive disorder, is a mitochondrial iron-binding protein, but how its deficiency leads to neurodegeneration and metabolic derangements is not known. We performed microarray analysis of heart and skeletal muscle in a mouse model of frataxin deficiency, and found molecular evidence of increased lipogenesis in skeletal muscle, and alteration of fiber-type composition in heart, consistent with insulin resistance and cardiomyopathy, respectively. Since the peroxisome proliferator-activated receptor gamma (PPARγ) pathway is known to regulate both processes, we hypothesized that dysregulation of this pathway could play a key role in frataxin deficiency. We confirmed this by showing a coordinate dysregulation of the PPARγ coactivator Pgc1a and transcription factor Srebp1 in cellular and animal models of frataxin deficiency, and in cells from FRDA patients, who have marked insulin resistance. Finally, we show that genetic modulation of the PPARγ pathway affects frataxin levels in vitro, supporting PPARγ as a novel therapeutic target in FRDA. To compare frataxin deficient (KIKO) mice vs. WT, heart and skeletal muscle. Three replicates (KIKO vs WT), with dye swap

ORGANISM(S): Mus musculus

SUBMITTER: Giovanni Coppola 

PROVIDER: E-GEOD-15843 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARgamma pathway as a therapeutic target in Friedreich's ataxia.

Coppola Giovanni G   Marmolino Daniele D   Lu Daning D   Wang Qing Q   Cnop Miriam M   Rai Myriam M   Acquaviva Fabio F   Cocozza Sergio S   Pandolfo Massimo M   Geschwind Daniel H DH  

Human molecular genetics 20090417 13


Friedreich's ataxia (FRDA), the most common inherited ataxia, is characterized by focal neurodegeneration, diabetes mellitus and life-threatening cardiomyopathy. Frataxin, which is significantly reduced in patients with this recessive disorder, is a mitochondrial iron-binding protein, but how its deficiency leads to neurodegeneration and metabolic derangements is not known. We performed microarray analysis of heart and skeletal muscle in a mouse model of frataxin deficiency, and found molecular  ...[more]

Similar Datasets

2009-06-02 | GSE15843 | GEO
2009-06-02 | GSE15848 | GEO
2010-04-09 | E-GEOD-15848 | biostudies-arrayexpress
2019-12-31 | GSE108200 | GEO
2023-12-04 | PXD044554 | Pride
2017-12-19 | GSE98790 | GEO
2011-07-25 | E-GEOD-30933 | biostudies-arrayexpress
2009-12-08 | GSE11204 | GEO
2011-07-26 | GSE30933 | GEO
2024-08-28 | GSE271798 | GEO