Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Transcription profiling of human immortalized, non-tumorigenic prostate epithelial cell line -time course of 1,25(OH)2D treated RWPE1 cells.


ABSTRACT: Background: Prostate cancer is the second leading cause of cancer mortality among US men. Epidemiological evidence suggests that high vitamin D status protects men from prostate cancer and the active form of vitamin D, 1α,25 dihydroxyvitamin D3 (1,25(OH)2D) has anti-cancer effects in cultured prostate cells. Still, the molecular mechanisms and the gene targets for vitamin D-mediated prostate cancer prevention are unknown. Results: We examined the effect of 1,25(OH)2D (+/- 100 nM, 6, 24, 48 h) on the transcript profile of proliferating RWPE1 cells, an immortalized, non-tumorigenic prostate epithelial cell line that is growth arrested by 1,25(OH)2D (Affymetrix U133 Plus 2.0, n=4/treatment per time and dose). Our analysis revealed many transcript level changes at a 5% false detection rate: 6 h, 1571 (61% up), 24 h, 1816 (60 % up), 48 h, 3566 (38 % up). 288 transcripts were regulated similarly at all time points (182 up, 80 down) and many of the promoters for these transcripts contained putative vitamin D response elements. Functional analysis by pathway or Gene Set Analysis revealed early suppression of WNT, Notch, NF-kB, and IGF1 signaling. Transcripts related to inflammation were suppressed at 6 h (e.g. IL-1 pathway) and suppression of proinflammatory pathways continued at later time points (e.g. IL-17 and IL-6 pathways). There was also evidence for induction of anti-angiogenic pathways and induction of transcripts for protection from oxidative stress or maintenance of cell redox homeostasis at 6 h. Conclusions: Our data reveal of large number of potential new, direct vitamin D target genes relevant to prostate cancer prevention. In addition, our data suggests that rather than having a single strong regulatory effect, vitamin D orchestrates a pattern of changes within prostate epithelial cells that limit or slow carcinogenesis. Experiment Overall Design: RWPE1 cells were treated with medium containing 100 nM of 1,25(OH)2D or vehicle (0.1% ethanol) for 6, 24 or 48 hours (n=4 per treatment, 24 total samples). The transcripts levels in each sample were measured by using the Affymetrix HU133 plus 2.0 GeneChip (Affymetrix, Santa Clara, CA).

ORGANISM(S): Homo sapiens

SUBMITTER: Pavlo Kovalenko 

PROVIDER: E-GEOD-15947 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

1,25 dihydroxyvitamin D-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostate epithelial cell line, RWPE1.

Kovalenko Pavlo L PL   Zhang Zhentao Z   Cui Min M   Clinton Steve K SK   Fleet James C JC  

BMC genomics 20100113


<h4>Background</h4>Prostate cancer is the second leading cause of cancer mortality among US men. Epidemiological evidence suggests that high vitamin D status protects men from prostate cancer and the active form of vitamin D, 1alpha,25 dihydroxyvitamin D3 (1,25(OH)2D) has anti-cancer effects in cultured prostate cells. Still, the molecular mechanisms and the gene targets for vitamin D-mediated prostate cancer prevention are unknown.<h4>Results</h4>We examined the effect of 1,25(OH)2D (+/- 100 nM  ...[more]

Similar Datasets

2009-12-18 | GSE15947 | GEO
2024-05-15 | GSE250048 | GEO
2024-05-15 | GSE247667 | GEO
2014-03-14 | E-GEOD-55207 | biostudies-arrayexpress
2016-12-06 | GSE63086 | GEO
| PRJNA117003 | ENA
2014-03-14 | GSE55207 | GEO
2016-04-07 | E-GEOD-70468 | biostudies-arrayexpress
2011-12-20 | E-GEOD-34564 | biostudies-arrayexpress
2010-11-19 | E-GEOD-22523 | biostudies-arrayexpress