Heparan Sulfation Dependent FGF Signalling Maintains ES Cells Primed for Differentiation in a Heterogeneous State
Ontology highlight
ABSTRACT: Embryonic stem (ES) cells continuously decide whether to maintain pluripotency or differentiate. While exogenous LIF and BMP4 perpetuate a pluripotent state, less is known about factors initiating differentiation. We show that heparan sulfate (HS) proteoglycans are critical co-receptors for signals inducing ES cell differentiation. Genetic targeting of NDST1 and 2, two enzymes required for N-sulfation of proteoglycans, blocked differentiation. This phenotype was rescued by HS presented in trans or by soluble heparin. NaClO3-, which reduces sulfation of proteoglycans, potently blocked differentiation of wild type cells. Mechanistically, N-sulfation was identified to be critical for functional autocrine FGF4 signalling. Micro array analysis identified the pluripotency maintaining transcription factors Nanog, KLF2/4/8, Tbx3 and Tcf3 to be negatively regulated, whereas markers of differentiation such as Gbx2, Dnmt3b, FGF5 and Brachyury were induced by sulfation-dependent-FGFR signalling. We show that several of these genes are heterogeneously expressed in ES cells and targeting of heparan sulfation or FGFR-signalling facilitated a homogenous Nanog/KLF4/Tbx3 positive ES cell state. This finding suggests that the recently discovered heterogeneous state of ES cells is regulated by HS-dependent FGFR signalling. Similarly, culturing blastocysts with NaClO3- eliminated GATA6 positive primitive endoderm progenitors generating a homogenous Nanog positive inner cell mass. Functionally, reduction of sulfation robustly improved de novo ES cell derivation efficiency. We conclude that N-sulfated HS is required for FGF4 signalling to maintain ES cells primed for differentiation in a heterogeneous state. Inhibiting this pathway facilitates a more naïve ground state. Four groups with three biological replicates and a technical duplicate in each
ORGANISM(S): Mus musculus
SUBMITTER: Lorenz Poellinger
PROVIDER: E-GEOD-15974 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA