Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Genome-wide transcriptome analysis of two maize inbred lines under drought stress during the seedling stage


ABSTRACT: To understand the transcriptome changes during drought tolerance in maize, the drought-tolerant line Han21 and drought-sensitive line Ye478, which show substantial differences in drought tolerance at the seedling stage, were selected for this study. Using the GeneChip Maize Genome Arrays, we applied genome-wide gene expression analysis to the two genotypes under gradual drought stress and re-watering. We identified 2172 common regulated transcripts in both lines under drought stress, with 1084 common up-regulated transcripts and 1088 common down-regulated transcripts. Among the 2172 transcripts, 58 potential protein kinases and 117 potential transcription factors were identified. The potential components of the ABA signaling pathway were identified from the common regulated transcripts. We also identified 940 differentially regulated transcripts between the two lines. Among the 940 transcripts, the differential expression levels of 29 transporters and 15 cell wall-related transcripts may contribute to the different tolerances of the two lines. Additionally, we found that the drought-responsive genes in the tolerant Han21 line recovered more quickly when the seedlings were re-watered, and 311 transcripts in the tolerant Han21 line were exclusively up-regulated at the re-watering stage compared to the control and stress conditions. Our study provides a global characterization of two maize inbred lines during drought stress and re-watering and will be valuable for further study of the molecular mechanisms of drought tolerance in maize. In two independent experiments, we generate maize gene expression profiles during drought stress and re-watering through comparing genome-wide expression patterns of drought stress treatment and re-watering treatment by using 17,555 Affymetrix maize whole genome array.

ORGANISM(S): Zea mays

SUBMITTER: Hongzhi Wang 

PROVIDER: E-GEOD-16567 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Genome-wide transcriptome analysis of two maize inbred lines under drought stress.

Zheng Jun J   Fu Junjie J   Gou Mingyue M   Huai Junling J   Liu Yunjun Y   Jian Min M   Huang Quansheng Q   Guo Xiying X   Dong Zhigang Z   Wang Hongzhi H   Wang Guoying G  

Plant molecular biology 20091202 4-5


Drought stress greatly affects plant growth and crop yield. To understand the transcriptome dynamics during drought stress in maize seedlings, genome-wide gene expression profiling was compared between the drought-tolerant line Han21 and drought-sensitive line Ye478 using Affymetrix Maize Genome Array containing 17,555 probe sets. The results showed that in response to drought, the Han21 line had fewer probe sets with significant expression change than the Ye478 line and both lines had a common  ...[more]

Similar Datasets

2010-06-03 | GSE16567 | GEO
2017-12-31 | GSE92487 | GEO
2006-07-22 | GSE2981 | GEO
2011-08-29 | E-MEXP-3320 | biostudies-arrayexpress
2018-12-25 | GSE124340 | GEO
2015-06-01 | GSE61700 | GEO
2021-08-03 | GSE168920 | GEO
2021-08-03 | GSE169022 | GEO
2021-08-03 | GSE179927 | GEO
2017-02-28 | GSE76322 | GEO