Gene expression profiles of murine granule neuron precursors and medulloblastoma
Ontology highlight
ABSTRACT: Sonic hedgehog (Shh) signals via Gli transcription factors to stimulate proliferation of granule neuron precursor cells (GNPs) in the cerebellum. Deregulation of Shh target genes often results in unrestrained GNP proliferation and eventually medulloblastoma (MB), the most common pediatric brain malignancy. Gene expression profiling was coupled with transcription factor binding location analysis to determine the Gli1-controlled transcriptional regulatory networks in GNPs and medulloblastoma cells. We detected significant overlap, as well as differences, in the Gli1-controlled transcriptional regulatory networks in GNPs and MBs. We determined the presence of gene expression in each dataset. There were 9260 genes expressed in Gli1-FLAG GNPs and 9185 genes expressed in Gli1-FLAG;Ptc+/- tumors; 8691 of which are in common. The large overlap is consistent with the cellular origin of these tumors. When the genes detectably expressed were intersected with our binding data, there were only 132 putative Gli1 target genes shared by both cell populations. Due to the heightened activation of the Hh pathway in tumors relative to GNPs, we further deduced direct Gli1 target genes exclusive to tumors by determining significantly induced genes in tumors versus in Ptc+/- GNPs. We identified at least 116 tumor-specific Gli1 target genes. These data suggest that tumor formation is accompanied by a tremendous change in the battery of Gli target genes. Presence of gene expression was determined for all samples: Gli1-FLAG-expressing GNPs, Ptc+/- GNPs, and Gli1-FLAG;Ptc+/-medulloblastomas. These datasets were intersected with chIP-chip data to determine potential direct Gli1 target genes. Differential gene expression was determined by comparing expression profiles from medulloblastoma tumors to those from Ptc+/- GNPs.
ORGANISM(S): Mus musculus
SUBMITTER: Zhengqing Ouyang
PROVIDER: E-GEOD-17702 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA