High-density gene expression analysis of tumor-associated macrophages from mouse mammary tumors
Ontology highlight
ABSTRACT: Clinical and experimental evidence indicates that tumor-associated macrophages (TAMs) promote malignant progression. In breast cancer, TAMs enhance tumor angiogenesis, tumor cell invasion, matrix remodeling, and immune suppression against the tumor. In this study, we examined late-stage mammary tumors from a transgenic mouse model of breast cancer. We used flow cytometry under conditions that minimized gene expression changes to isolate a rigorously defined TAM population previously shown to be associated with invasive carcinoma cells. The gene expression signature of this population was compared with a similar population derived from spleens of non-tumor-bearing mice using high-density oligonucleotide arrays. Using stringent selection criteria, transcript abundance of 460 genes was shown to be differentially regulated between the two populations. Bioinformatic analyses of known functions of these genes indicated that formerly ascribed TAM functions, including suppression of immune activation and matrix remodeling, as well as multiple mediators of tumor angiogenesis, were elevated in TAMs. Further bioinformatic analyses confirmed that a pure and valid TAM gene expression signature in mouse tumors could be used to assess expression of TAMs in human breast cancer. The data derived from these more physiologically relevant autochthonous tumors compared with previous studies in tumor xenografts suggest tactics by which TAMs may regulate tumor angiogenesis and thus provide a basis for exploring other transcriptional mediators of TAM trophic functions within the tumor microenvironment. Tumor-associated macrophages from late-stage mouse mammary tumors compared to splenic macrophages from non-tumor-bearing littermate controls. 4 biological replicates of each population were compared via gene expression arrays.
ORGANISM(S): Mus musculus
SUBMITTER: Laureen Ojalvo
PROVIDER: E-GEOD-18404 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA