MicroRNA profiling of extraocular muscles
Ontology highlight
ABSTRACT: The extraocular muscles (EOMs) are a unique group of muscles that are anatomically and physiologically distinct from other skeletal muscles. Previously, we and others have shown that EOMs have a unique transcriptome and proteome. Here, we investigated the expression pattern of microRNAs (miRNAs) in EOM, as they may play a role in generating the unique EOM allotype. We screened LC Sciences miRNA microarrays covering the sequences of miRBase 10.0 to define the microRNAome of normal mouse EOM and tibialis anterior (TA) limb muscle. 74 miRNAs were found to be differentially regulated (p-value < 0.05) and 31 miRNAs (14 up-regulated and 17 down-regulated) were found to be differentially regulated at a signal strength > 500 including the muscle-specific miR-206, miR-1, miR-133a, miR-133b and miR-499. qPCR analysis was used to validate the differential expression. Bioinformatic tools were used to identify potential miRNA-mRNA-protein interactions and integrate data with previous transcriptome and proteomic profiling data. Luciferase assays using co-transfection of precursor miRNAs (pre-miRNAs) along with reporter constructs containing the 3â-untranslated region (3âUTR) of their predicted target genes were used to validate targeting by identified miRNAs. The definition of the EOM microRNAome complements existing transcriptome and proteome data about the molecular make-up of EOM and provides further insight into regulation of muscle genes. These data will also help to further explain the unique EOM muscle allotype and its differential sensitivity to diseases such as Duchenne's muscular dystrophy (DMD) and may assist in development of therapeutic strategies. Total RNA from four EOM and four TA tissue samples dissected from four adult male C57/Bl10 mice were used (TA served as control) to screen four LC Sciences microRNA Microarray chips. The chips contained microRNA sequences based on miRBase content 10.0 totalling 568 different miRNAs. Samples were labelled with Cy3 and Cy5 using dye-swap. Relative differences of miRNA expression was expressed as fold-changes EOM/TA, which were calculated after normalization across all four arrays.
ORGANISM(S): Mus musculus
SUBMITTER: Ulrike Zeiger
PROVIDER: E-GEOD-18538 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA