Glucose Shortens the Lifespan of Caenorhabditis elegans by Down-Regulating Aquaporin Gene Expression
Ontology highlight
ABSTRACT: Many studies have addressed the effect of dietary glycemic index on obesity and diabetes, but little is known about its effect on lifespan itself. We found that adding a small amount of glucose to the medium (0.1-2%) shortened the lifespan of C. elegans. Glucose shortened lifespan by inhibiting the activities of lifespan-extending transcription factors that are also inhibited by insulin signaling: the FOXO family member DAF-16 and the heat shock factor HSF-1. This effect involved the down-regulation of an aquaporin glycerol channel, aqp-1. We show that changes in glycerol metabolism are likely to underlie the lifespan-shortening effect of glucose, and that aqp-1 may act cell non-autonomously as a feedback regulator in the insulin/IGF-1 signaling pathway. Insulin down-regulates similar glycerol channels in mammals, suggesting that this glucose-responsive pathway might be conserved evolutionarily. Together these findings raise the possibility that a low-sugar diet might have beneficial effects on lifespan in higher organisms. Refer to individual Series. This SuperSeries is composed of the following subset Series: GSE18561: Adult C. elegans: Control daf-2 mutants treated with daf-16 RNAi vs. daf-2 mutants treated with empty vector RNAi GSE18562: Adult C. elegans: Control OP50 culture vs. OP50 + 2% glucose culture
ORGANISM(S): Caenorhabditis elegans
SUBMITTER: SEUNG-JAE LEE
PROVIDER: E-GEOD-18563 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA