Transcriptome of Aspergillus oryzae following ER stress
Ontology highlight
ABSTRACT: The Aspergillus oryzae, an important filamentous fungus used in food fermentation and enzyme industry, has been revealed to own prominent features in its genomic compositions by genome sequencing and various other tools. However, the functional complexity of the A. oryzae transcriptome has not yet been fully elucidated. Here, we applied direct high-throughput paired-end RNA sequencing (RNA-Seq) to the transcriptome of A. oryzae under four different culture conditions and confirmed most of the annotated genes. Moreover, with high resolution and sensitivity afforded by RNA-Seq, we were able to identify a substantial number of novel transcripts, new exons, untranslated regions, alternative upstream initiation codons (uATGs) and upstream open reading frames (uORFs), which serves a remarkable insight into the A. oryzae transcriptome. We also were able to assess the alternative mRNA isoforms in A. oryzae and found a large number of genes undergoing alternative splicing. Many genes or pathways that might involve in higher levels of protein production in solid-state culture than in liquid culture were identified by comparing gene expression levels between different cultures. Our analysis indicated that the transcriptome of A. oryzae was much more complex than previously anticipated and the results might provide a blueprint for further study of A. oryzae transcriptome. mRNA expression of Aspergillus oryzae in 4 different culture conditions was determined by method of RNA-Seq using short reads from high throughput sequencing technology.
ORGANISM(S): Aspergillus oryzae
SUBMITTER: Guangwu Guo
PROVIDER: E-GEOD-18851 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA