Transcriptome analysis of Arabidopsis thaliana G protein subunit mutants in response to abscisic acid (ABA)
Ontology highlight
ABSTRACT: Heterotrimeric G proteins mediate crucial and diverse signaling pathways in eukaryotes. To gain insights into the regulatory modes of the G protein and the co-regulatory modes of the G protein and the stress hormone abscisic acid (ABA), we generated and analyzed gene expression in G protein subunit single and double mutants of the model plant Arabidopsis thaliana. Through a Boolean modeling approach, our analysis reveals novel modes of heterotrimeric G protein action. Keywords: transcriptome analysis; G protein subunit mutants; abscisic acid (ABA) Microarray data were generated from four genotypes (wild type, gpa1-4 mutant, agb1-2 mutant, agb1-2 gpa1-4 double mutant) with or without ABA treatment. Arabidopsis plants were grown in growth chambers with an 8 hr light/16hr dark. Three hundred Arabidopsis leaves excised from 60-70 five-week-old plants were used as the starting material for each guard cell microarray. Ten mature leaves taken from 3-4 plants grown side-by side with the plants for guard cell isolation were used for each leaf sample. Excised leaf and isolated guard cell samples were treated with ABA (50 μM) or EtOH (solvent control) for 3 hrs. For each type of sample (guard cells or leaves), three independent biological replicates were performed, resulting in a total of 48 microarray hybridizations (2 sample types ´ 4 genotypes ´ two treatments ´3 replicates).
ORGANISM(S): Arabidopsis thaliana
SUBMITTER: Sarah Assmann
PROVIDER: E-GEOD-19520 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA