Gene expression data from rapamycin resistant and sensitive cell lines
Ontology highlight
ABSTRACT: The mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation. Inhibitors of mTOR are being evaluated as anti-tumor agents. Given the emerging role of microRNAs (miRNAs) in tumorgenesis we hypothesized that miRNAs could play important roles in the response of tumors to mTOR inhibitors. Rapamycin resistant myogenic cells developed by long-term rapamycin treatment showed extensive reprogramming of miRNAs expression, characterized by up-regulation of the mir-17~92 and related clusters and down-regulation of tumor-suppressor miRNAs. Antagonists of oncogenic miRNA families and mimics of tumor suppressor miRNAs (let-7) restored rapamycin sensitivity in resistant tumor cells. This study identified miRNAs as new downstream components of the mTOR-signaling pathway, which may determine the response of tumors to mTOR inhibitors. Total RNA extraction and hybridization on Affymetrix microarrays of rapamycin sensitive (RS) cells (BC3H1, mouse brain tumor cell line with myogenic properties, ATCC) cultured in Dulbecco’s modified essential medium (DMEM) media supplemented with 20% fetal bovine serum (FBS), penicillin (100 U/ml) and streptomycin (100 mg/ml). Rapamycin resistant cells (RR1) were developed by culturing BC3H1 cells in the presence of 1 uM rapamycin for 6 months. Three samples in triplicates: 1) Rapamycin sensitive cells treated with DMSO for 24 h(BC3H1, reference), 2) Rapamycin sensitive cells treated for 24 h with 100 nM rapamycin (BC3H1+R), 3) Rapamycin resistant cells constantly treated with 1uM Rapamycion (RR1+R).
ORGANISM(S): Mus musculus
SUBMITTER: Hana Totary-Jain
PROVIDER: E-GEOD-19885 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA