Her2/Neu breast cancer mouse model transcriptome
Ontology highlight
ABSTRACT: Purpose: We generated extensive transcriptional and proteomic profiles from a Her2-driven mouse model of breast cancer that closely recapitulates human breast cancer. This report makes these data publicly available in raw and processed forms, as a resource to the community. Importantly, we previously made biospecimens from this same mouse model freely available through a sample repository, so researchers can obtain samples to test biological hypotheses without the need of breeding animals and collecting biospecimens. Experimental design: Twelve datasets are available, encompassing 841 LC-MS/MS experiments (plasma and tissues) and 255 microarray analyses of multiple tissues (thymus, spleen, liver, blood cells, and breast). Cases and controls were rigorously paired to avoid bias. Results: In total, 18,880 unique peptides were identified (PeptideProphet peptide error rate â¤1%), with 3884 and 1659 non-redundant protein groups identified in plasma and tissue datasets, respectively. Sixty-one of these protein groups overlapped between cancer plasma and cancer tissue. Conclusions and clinical relevance: These data are of use for advancing our understanding of cancer biology, for software and quality control tool development, investigations of analytical variation in MS/MS data, and selection of proteotypic peptides for MRM-MS. The availability of these datasets will contribute positively to clinical proteomics. Custom Agilent 44K whole mouse genome expression oligonucleotide microarrays were used to profile breast tumors from three Her2/Neu mice compared to normal breast epithelium from two control mice transgenic for TetO-NeuNT only and littermates of the bitransgenic mice. All samples were laser-capture microdissected and total RNA isolated and amplified prior to hybridization against a reference pool of normal adult mouse tissues.
ORGANISM(S): Mus musculus
SUBMITTER: Ilsa Coleman
PROVIDER: E-GEOD-20280 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA