H3K9K14ac ChIP-chip in lung cancer cells treated with histone deacetylase inhibitor
Ontology highlight
ABSTRACT: Lung cancer is the leading cause of cancer mortality worldwide, yet the therapeutic strategy for advanced non-small cell lung cancer (NSCLC) is limitedly effective. In addition, validated histone deacetylase (HDAC) inhibitors for the treatment of solid tumors remain to be developed. Here, we propose a novel HDAC inhibitor, OSU-HDAC-44, as a chemotherapeutic drug for NSCLC. OSU-HDAC-44 was a pan-HDAC inhibitor and exhibits 3-4 times more effectiveness than suberoylanilide hydroxamic acid (SAHA) in suppressing cell viability in various NSCLC cell lines. Upon OSU-HDAC-44 treatment, mitosis and cytokinesis were inhibited and subsequently led to mitochondria-mediated apoptosis. The cytokinesis inhibition resulted from OSU-HDAC-44-mediated degradation of mitosis and cytokinesis regulators Auroroa B and survivin. The deregulation of F-actin dynamics induced by OSU-HDAC-44 was associated with reduction in RhoA activity resulting from srGAP1 induction. Chromatin-immunoprecipitation-on-chip analysis revealed that OSU-HDAC-44 induced chromatin loosening and facilitated transcription of genes involved in crucial signaling pathways such as apoptosis, axon guidance and protein ubiquitination. Finally, OSU-HDAC-44 efficiently inhibited A549 xenograft tumor growth and induced acetylation of histone and non-histone proteins and apoptosis in vivo. Collectively, our data provide compelling evidence that OSU-HDAC-44 is a potent HDAC targeted inhibitor and can be tested for NSCLC chemotherapy. ChIP-chip analysis for H3K9K14ac in A549, H1299 and CL1-1 lung cancer cells treated with 2.5 uM histone deacetylase inhibitor, OSU-HDAC-44, for 2 hours.
ORGANISM(S): Homo sapiens
SUBMITTER: Yi-Ching Wang
PROVIDER: E-GEOD-20304 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA