Transcriptional response to protease treatments (kallikrein, papain and chymotrypsin) of Bifidobacterium breve 210B
Ontology highlight
ABSTRACT: Members of the serpin (serine protease inhibitor) superfamily have been identified in higher, multicellular eukaryotes, as well as in bacteria, although surveillance of available genome sequences indicates that bacterial serpin-encoding (ser) homologs are not widely distributed. In members of the genus Bifidobacterium this gene appears to be present in at least five, and perhaps up to nine, out of 30 species tested. Moreover, phylogenetic analysis using available bacterial and eukaryotic serpin sequences revealed that bifidobacteria specify serpins that form a separate clade. We characterized the ser210B locus of Bifidobacterium breve 210B, which consists of a number of genes, whose deduced protein products display significant similarity to proteins encoded by corresponding loci found in several other bifidobacteria. Northern hybridization, primer extension, micro array analysis, RT-PCR and Quantitative Real Time (qRT) - PCR analysis revealed that a 3.5 kb polycistronic mRNA, encompassing the ser210B operon with a single transcriptional start site, is strongly induced following treatment of B. breve 210B cultures with particular proteases. In contrast, transcription of the ser homolog of other bifidobacteria, such as Bifidobacterium longum subsp. infantis, Bifidobacterium dentium and B. longum subsp. longum, appears to be triggered by a different set of proteases Transcriptional response to protease treatments (kallikrein, papain and chymotrypsin) of Bifidobacterium breve 210B
ORGANISM(S): Bifidobacterium breve
SUBMITTER: Elena Foroni
PROVIDER: E-GEOD-20626 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA