Sigma B in Listeria monocytogenes strains from different lineages
Ontology highlight
ABSTRACT: Listeria monocytogenes strains classify into at least three distinct phylogenetic lineages. Correlations exist between lineage classification and source of bacterial isolation, e.g., human clinical and food isolates usually classify into either lineage I or II, however, human clinical isolates are over-represented in lineage I while food isolates are over-represented in lineage II. σB, a transcriptional regulator previously demonstrated to contribute to environmental stress response and virulence in L. monocytogenes lineage II strains, was hypothesized to provide differential capabilities for L. monocytogenes survival in various niches (e.g., food vs. human clinical). To determine if σB contributions to stress response and virulence differ across diverse L. monocytogenes strains, ΔsigB mutations were created in strains from lineages I, II, IIIA, and IIIB. Paired parent and ΔsigB mutant strains were tested for acid and oxidative stress survival, Caco-2 cell invasion efficiency, and virulence using the guinea pig listeriosis infection model. Parent and ΔsigB mutant strain transcriptomes were compared using whole-genome expression microarrays. σB contributed to virulence in each strain. However, while σB contributed significantly to acid and oxidative stress survival and Caco-2 cell invasion in lineage I, II, and IIIB strains, σB contributions were not significant for these phenotypes in the lineage IIIA strain. A core set of 63 genes was positively regulated by σB in all four strains; different total numbers of genes were positively regulated by σB in each strain. Our results suggest that σB universally contributes to L. monocytogenes virulence, but specific σB-regulated stress response phenotypes vary among strains.
ORGANISM(S): Listeria monocytogenes
SUBMITTER: Haley Oliver
PROVIDER: E-GEOD-21427 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA