PF4-Cre mediated deletion of SRF in murine megakaryocytes.
Ontology highlight
ABSTRACT: Srf is a MADS-box transcription factor that is critical for muscle differentiation. Its function in hematopoiesis has not yet been revealed. Mkl1, a cofactor of Srf, is part of the t(1;22) translocation in acute megakaryoblastic leukemia, and plays a critical role in megakaryopoiesis. In order to test the role of Srf in megakaryocyte development, we crossed Pf4-Cre mice, which express Cre recombinase in cells committed to the megakaryocytic lineage, to SrfF/F mice in which functional Srf is no longer expressed after Cre-mediated excision. Pf4-Cre/SrfF/F (KO) mice are born with normal mendelian frequency, but have significant macrothrombocytopenia with approximately 50% reduction in platelet count. In contrast, the BM has increased numbers and percentages of CD41+ megakaryocytes (WT: 0.41+/-0.06%; KO: 1.92+/-0.12%) with significantly reduced ploidy. KO mice show significantly increased megakaryocyte progenitors in the BM by both FACS analysis and CFU-Mk. Megakaryocytes lacking Srf have abnormal stress fiber and demarcation membrane formation and platelets lacking Srf have abnormal actin distribution. In vitro and in vivo assays reveal platelet function defects in KO mice. Critical actin cytoskeletal genes are downregulated in KO megakaryocytes. Thus, Srf is required for normal megakaryocyte maturation and platelet production, due at least in part, to regulation of cytoskeletal genes. C-kit+CD41+ megakaryocyte progenitors from PF4-Cre/SRF C57BL/6 SRF WT (3) and C57BL/6 SRF KO (3) mice were sorted by flow cytometry and cultured for three days in thrombopoietin.
ORGANISM(S): Mus musculus
SUBMITTER: Vince Schulz
PROVIDER: E-GEOD-21859 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA