Gene expression changes in the female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury
Ontology highlight
ABSTRACT: Methylmercury (MeHg) is a potent neurotoxin and endocrine disruptor that accumulates in aquatic systems. Previous studies have shown suppression of hormone levels in both male and female fish, suggesting effects on gonadotropin regulation in the brain. We investigated the gene expression profile in adult female zebrafish whole brain induced by acute (96 hr) MeHg exposure. Fish were exposed by injection to 0 or 0.5 M-BM-5g MeHg/g. Gene expression changes in the brain were examined using a two-color 22,000 feature zebrafish microarray. At a significance level of p<0.01, 79 genes were up-regulated and 76 genes were down-regulated in response to MeHg exposure. Individual genes exhibiting altered expression in response to MeHg exposure implicate effects on glutathione metabolism and GABA-A receptors in the mechanism of MeHg neurotoxicity. Gene ontology (GO) terms significantly enriched among altered genes included protein folding, cell redox homeostasis, and steroid biosynthetic process. The most affected biological functions were related to the nervous system development and function, as well as lipid metabolism and molecular transport. These results support the involvement of oxidative stress and effects on protein structure in the mechanism of action of MeHg in the female brain. Future studies will compare the gene expression profile induced in response to MeHg with that induced by other toxins and investigate responsive genes as potential biomarkers of MeHg exposure. Wild-type strain AB-1 zebrafish (Zebrafish International Resource Center, University of Oregon, Eugene, OR) were cultured at the Columbia Environmental Research Center (CERC), USGS, for MeHg exposures. Adult female zebrafish were injected with 0 M-NM-
ORGANISM(S): Danio rerio
SUBMITTER: Natalia Vinas
PROVIDER: E-GEOD-22662 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA