Transcriptional profiling of the luteinizing hormone surge in bovine granulosa cells (GC) during the pre-ovulation period comparing 2 h pre-LH GC, 6 h post-LH GC and 22 h post-LH GC
Ontology highlight
ABSTRACT: The LH surge induces panoply of events that are essential for ovulation and corpus luteum formation. The transcriptional responses to the LH surge of pre-ovulatory granulosa cells are complex and still poorly understood. In the present study, a genome wide bovine oligo array was used to determine how the gene expression profiles of granulosa cells are modulated by the LH surge. Granulosa cells from three different statuses were used (1) 2 h before the induction of the LH surge, (2) 6 h and (3) 22 h after the LH surge to assess the short and long term effects of this hormone on follicle differentiation. The results obtained were a list of differentially expressed transcripts for each granulosa cell group. To provide a comprehensive understanding of the processes at play, biological annotations were used to reveal the different functions of transcripts, confirming that the LH surge acts in a temporal manner. The pre-LH group is involved in typical tasks such as cell division, development and proliferation, while the short response of the LH surge included features such as response to stimulus, vascularisation and lipid synthesis, which are indicative of cells preparing for ovulation. The late response of granulosa cells revealed terms associated with protein localization and intra-cellular transport corresponding to the future secretion task that will be required for the transformation of granulosa cells into corpus luteum. Overall, results described in this study provide new insights into the different transcriptional steps that granulosa cells go through during ovulation and before luteinization. Three biological granulosa cells samples: 2 h pre-LH vs. 6 h post-LH vs. 22 h post-LH. Biological replicates: 3 with a technical dye-swap replicates (Dy 547 and Dy 647) for each biological replicate. Hybridizations were performed in a loop design for a total a 9 hybridizations.
ORGANISM(S): Bos taurus
SUBMITTER: Isabelle Gilbert
PROVIDER: E-GEOD-23900 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA