Formation, regulation and evolution of 3' UTRs in Caenorhabditis elegans
Ontology highlight
ABSTRACT: Much of posttranscriptional mRNA regulation occurs through cis-acting sequences in mRNA 3´ untranslated regions (UTRs), which interact with specific proteins and ribonucleoprotein complexes that modulate translation, mRNA stability and subcellular localization. Studies in Caenorhabditis elegans have revealed indispensable roles for 3´UTR-mediated gene regulation, yet most C. elegans genes have lacked annotated 3´UTRs. Here we describe a high-throughput method to reliably identify 3´ ends of polyadenylated RNAs. This method, called poly(A)-position profiling by sequencing (3P-Seq), was used to determine the UTRs of C. elegans. Compared to standard methods also recently applied to C. elegans UTRs, 3P-Seq identified 8775 additional UTRs while excluding thousands of shorter UTR isoforms that do not appear to be authentic. Analysis of this expanded and corrected dataset indicated that the high A/U content of C. elegans 3´UTRs facilitated genome compaction, since the elements specifying cleavage and polyadenylation, which are A/U-rich, can more readily emerge in A/U rich regions. Indeed, 30% of the protein-coding genes have mRNAs with alternative, partially overlapping end regions that generate another 10,000 cleavage and polyadenylation sites that had gone largely unnoticed and represent potential evolutionary intermediates of progressive UTR shortening. Moreover, a third of the convergently transcribed genes utilize palindromic arrangements of bidirectional elements to specify UTRs with convergent overlap, which also contributes to genome compaction by eliminating regions between genes. Although nematode 3´UTRs have median length only one-sixth that of mammalian 3´UTRs, they have twice the density of conserved microRNA sites, in part because additional types of seed-complementary sites are preferentially conserved. These findings reveal the influence of cleavage and polyadenylation on the evolution of genome architecture and provide resources for studying posttranscriptional gene regulation. Nine samples (10 sequencing runs) from various mixed and specific stages of wild-type Caenorhabditis elegans and glp-4 mutant adults.
ORGANISM(S): Caenorhabditis elegans
SUBMITTER: calvin jan
PROVIDER: E-GEOD-24924 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA