Transcriptome profiling data for secondary vascular tissue regeneration in Populus tomentosa
Ontology highlight
ABSTRACT: Regeneration is a common strategy for plants to repair their damaged body plans after attack from other organisms or physical assaults. Trees with bark girdling on a large scale will grow new bark within one month and this bark regeneration after girdling system has been proven to be an efficient method to study secondary vascular development as well as plant tissue regeneration in vivo. We herein show the molecular features of differentiating xylem cell fate switch process during secondary vascular tissue (SVT) regeneration in Populus. Based on our data, we propose a working model to illustrate the molecular dynamics underlying xylem cell fate switch process during SVT regeneration, which is significant to understand the pattern formation during the SVTs regeneration and also would shed light on the mechanisms of tissue regeneration in plants. Specific regenerated tissues of Populus at different stages were isolated by tangential cryo-sectioning. Total RNA from cryo-sections representing different regenerating tissues was extracted for Affymetrix Poplar Whole Genome Array hybridization. Five samples (two replicates for each sample) were used for gene expression analysis: differentiating xylem (diX, Stage 0), dedifferentiating xylem cells (deX, Stage I), regenerated phloem (rPh, Stage II), differentiating regenerated cambium (diC, Stage II) and regenerated cambium (rC, Stage III). In addition, one pooled genomic DNA sample from cryo-sections of differentiating xylem from two trees was isolated for DNA hybridization to produce a new CDF file that was used to mask out some potentially cross-hybridizing probesets from the standard Affymetrix Poplar Genome Array. Supplementary file: poplar.cdf
ORGANISM(S): Populus tomentosa
SUBMITTER: Jing Zhang
PROVIDER: E-GEOD-25309 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA