Unknown,Transcriptomics,Genomics,Proteomics

Dataset Information

0

Ascaris suum transcriptome (RNA-Seq) data


ABSTRACT: Eukaryotic cells express several classes of small RNAs that regulate gene expression and ensure genome maintenance. Endogenous siRNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs) mainly control gene and transposon expression in the germline, while microRNAs (miRNAs) generally function in post-transcriptional gene silencing in both somatic and germline cells. To provide an evolutionary and developmental perspective on small RNA pathways in nematodes, we identified and characterized known and novel small RNA classes through gametogenesis and embryo development in the parasitic nematode Ascaris suum and compared them with known small RNAs of Caenorhabditis elegans. piRNAs, Piwi-clade Argonautes, and other proteins associated with the piRNA pathway have been lost in Ascaris. miRNAs are synthesized immediately following fertilization in utero, prior to pronuclear fusion, and before the first cleavage of the zygote. This is the earliest expression of small RNAs ever described at a developmental stage long thought to be transcriptionally quiescent. A comparison of the two classes of Ascaris endo-siRNAs, 22G-RNAs and 26G-RNAs, to those in C. elegans, suggests great diversification and plasticity in the use of small RNA pathways during spermatogenesis in different nematodes. Our data reveal conserved characteristics of nematode small RNAs as well as features unique to Ascaris that illustrate significant flexibility in the use of small RNAs pathways, some of which are likely an adaptation to AscarisM-bM-^@M-^Y life cycle and parasitism. We generated transcriptomes from Ascaris germline and embryos for de-novo assembly as well as cDNA expression profiles. Two types of libraries were prepared: 1) sheared, full-length cDNA synthesized using a combination of oligo-dT and random hexamer priming and 2) cDNA prepared from RNA first chemically sheared and then double-stranded cDNA prepared using ramom hexamer priming.

ORGANISM(S): Ascaris suum

SUBMITTER: Jianbin Wang 

PROVIDER: E-GEOD-26956 | biostudies-arrayexpress |

REPOSITORIES: biostudies-arrayexpress

altmetric image

Publications

Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles.

Wang Jianbin J   Czech Benjamin B   Crunk Amanda A   Wallace Adam A   Mitreva Makedonka M   Hannon Gregory J GJ   Davis Richard E RE  

Genome research 20110617 9


Eukaryotic cells express several classes of small RNAs that regulate gene expression and ensure genome maintenance. Endogenous siRNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs) mainly control gene and transposon expression in the germline, while microRNAs (miRNAs) generally function in post-transcriptional gene silencing in both somatic and germline cells. To provide an evolutionary and developmental perspective on small RNA pathways in nematodes, we identified and characterized known and  ...[more]

Similar Datasets

2011-06-16 | E-GEOD-26955 | biostudies-arrayexpress
2012-11-13 | E-GEOD-38470 | biostudies-arrayexpress
2011-06-16 | GSE26956 | GEO
2011-06-16 | GSE26955 | GEO
2016-07-15 | E-GEOD-76914 | biostudies-arrayexpress
2014-01-02 | E-GEOD-46277 | biostudies-arrayexpress
2021-12-15 | GSE189061 | GEO
2024-04-29 | PXD042662 | Pride
2009-10-01 | E-GEOD-18215 | biostudies-arrayexpress
2014-07-05 | E-GEOD-52177 | biostudies-arrayexpress