OXPHOS complex I deficiency leads to transcriptional changes of the Nrf2-Keap1 pathway and selenoproteins.
Ontology highlight
ABSTRACT: Defective complex I (CI) is the most common type of oxidative phosphorylation (OXPHOS) disease in patients, with an incidence of 1 in 5,000 live births. Complex I deficiency can present in infancy or early adulthood and shows a wide variety of clinical manifestations, including Leigh syndrome, (cardio)myopathy, hypotonia, stroke, ataxia and lactic acidosis. A number of critical processes and factors, like superoxide production, calcium homeostasis, mitochondrial membrane potential and mitochondrial morphology, are known to be involved in clinical CI deficiency, but not all factors are yet known and a complete picture is lacking. Therefore, whole genome gene expression profiling was performed in fibroblasts of CI deficient patients and controls, comparing glycolytic and oxidative conditions. Linear regression and pathway analysis identified a number of key adaptive processes. Fibroblasts were derived from skin biopsies of five patients homozygous or compound heterozygous for nuclear complex I mutations and five controls. The groups were matched for age and sex.
ORGANISM(S): Homo sapiens
SUBMITTER: An Voets
PROVIDER: E-GEOD-27041 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA