Acropora millepora adult samples: Control vs medium and high ocean acidification treatment
Ontology highlight
ABSTRACT: In this study we investigated how changes in pH and ocean chemistry consistent with the scenarios of the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, long before they affect biomineralization. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrated up-regulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur well before impacts on calcification. We applied a reference microarray design for the experiment outlined in the study, which was a three condition experiment of ocean acidification: control pH 8.0-8.2, medium pH 7.8-7.9 and high pH 7.6-7.7, and across three time points: time zero, day 1 and day 28. Samples from time zero and control treatments were used to generate the reference sample for the microarray hybridization experiments. A total of 27 microarrays were used in the entire experiment, 3 biological replicates per treatment and timepoint. Reference samples in each array was labeled with Cy3, and the actual experimental samples with Cy5.
ORGANISM(S): Acropora millepora
SUBMITTER: Paulina Kaniewska
PROVIDER: E-GEOD-28697 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA