Chromatin and Transcriptional Signatures for Nodal Signaling During Endoderm Formation in hESCs
Ontology highlight
ABSTRACT: To elucidate the Nodal transcriptional network that governs endoderm formation, we used ChIP-Seq to identify genomic targets for SMAD2/3, SMAD3, SMAD4, FOXH1 and the active and repressive chromatin marks, H3K4me3 and H3K27me3, in human embryonic stem cells (hESCs) and derived endoderm. We demonstrate that while SMAD2/3, SMAD4 and FOXH1 target binding is highly dynamic, there is an optimal signature for driving endoderm commitment. Initially, this signature is marked by both H3K4me3 and H3K27me3 as a very broad bivalent domain in hESCs. Within the first 24 hours, at a few select promoters, SMAD2/3 accumulation coincides with H3K27me3 depletion so that these loci become selectively monovalent marked only by H3K4me3. The correlation between SMAD2/3 binding, monovalent formation and transcriptional activation suggests a mechanism by which SMAD proteins coordinate with chromatin at critical promoters to drive endoderm specification. Examination of 2 different histone modifications and 4 different transcription factor associations in 2 cell types. For transcription factor analysis, three biological replicate ChIPs were pooled from each antibody, as well as input controls, for both hESCs and derived endoderm. For histone modifications, two biological replicates for H3K4me3 and three for H3K27me3 were used.
ORGANISM(S): Homo sapiens
SUBMITTER: Si Wan Kim
PROVIDER: E-GEOD-29422 | biostudies-arrayexpress |
REPOSITORIES: biostudies-arrayexpress
ACCESS DATA